82 research outputs found

    Asteroid and comet surfaces

    Get PDF
    Photometric and spectrophotometric studies of asteroids and comets are in progress to address questions about the mineralogical relationship between asteroids near the 3:1 Kirkwood gap and ordinary chondrite meteorites and between cometary nuclei and the surface of asteroids. Progress was made on a method to convert the measured excess UV flux in the spectrum of 2201 Oljato to column abundance of OH and CN. Spectral reflectance measurements of large asteroids near the 3:1 Kirkwood gap, which is expected to be the source of ordinary chondrite meteorites, were briefly examined and show no spectral signatures that are characteristic of ordinary chondrite meteorite powders measured in the lab

    Asteroid surface processes: Experimental studies of the solar wind on reflectance and optical properties of asteroids

    Get PDF
    The effect of the solar wind on the optical properties of meteorites was studied to determine whether the solar wind can alter the properties of ordinary chondrite parent bodies resulting in the spectral properties of S-type asteroids. The existing database of optical properties of asteroids was analyzed to determine the effect of solar wind in altering asteroid surface properties

    Bias correction factors for near-Earth asteroids

    Get PDF
    Knowledge of the population size and physical characteristics (albedo, size, and rotation rate) of near-Earth asteroids (NEA's) is biased by observational selection effects which are functions of the population's intrinsic properties and the size of the telescope, detector sensitivity, and search strategy used. The NEA population is modeled in terms of orbital and physical elements: a, e, i, omega, Omega, M, albedo, and diameter, and an asteroid search program is simulated using actual telescope pointings of right ascension, declination, date, and time. The position of each object in the model population is calculated at the date and time of each telescope pointing. The program tests to see if that object is within the field of view (FOV = 8.75 degrees) of the telescope and above the limiting magnitude (V = +1.65) of the film. The effect of the starting population on the outcome of the simulation's discoveries is compared to the actual discoveries in order to define a most probable starting population

    Near infrared reflectance spectra: Applications to problems in asteroid-meteorite relationships

    Get PDF
    An observing program designed to search for evidence of ordinary chondrite parent bodies near the 3:1 Kirkwood Gap was carried out in 1985 and 1986. Studies by Wisdom (1985), Wetherill (1985), and subsequent work by Milani et al. (1989) indicate that the 3:1 Kirkwood gap is the most probable source region for the majority of ordinary chondrite meteorites. The diversity of the reflectance spectra among this small data set is surprising. Early work by Gaffey and McCord (1978) showed that the inner region of the main asteroid belt is dominated by high albedo objects with mafic silicate surfaces. One would expect to see mostly spectra with 1- and 2-micron absorption bands based on this earlier work. Only 5 (of 12) spectra have these expected features. The distribution of taxonomic types presented by Gradie and Tedesco (1982) is in most cases a useful simplification of the compositional structure of the asteroid belt. The range of spectral characteristics seen with higher resolution in the near-IR has not been previously reported and is not represented in the standard asteroid taxonomy. Near-IR spectra contain valuable mineralogical information which enhances knowledge of the composition and structure of asteroids

    Visible spectral reflectance measurements of the Galilean satellites of Jupiter (MORE)

    Get PDF
    Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences.Microfiche copy available in Archives and Science.Bibliography : leaves 78-84.by Lucy-Ann A. McFadden.M.S

    The 1990 update to strategy for exploration of the inner planets

    Get PDF
    The Committee on Planetary and Lunar Exploration (COMPLEX) has undertaken to review and revise the 1978 report Strategy for Exploration of the Inner Planets, 1977-1987. The committee has found the 1978 report to be generally still pertinent. COMPLEX therefore issues its new report in the form of an update. The committee reaffirms the basic objectives for exploration of the planets: to determine the present state of the planets and their satellites, to understand the processes active now and at the origin of the solar system, and to understand planetary evolution, including appearance of life and its relation to the chemical history of the solar system

    Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    Get PDF
    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres

    New Records of the Cryptogenic Soft Coral Genus Stragulum (Tubiporidae) from the Eastern Caribbean and the Persian Gulf

    Get PDF
    The monotypic soft coral genus Stragulum van Ofwegen and Haddad, 2011 (Octocorallia: Malacalcyonacea: Tubiporidae) was originally described from Brazil, southwest Atlantic Ocean. Here, we report the first records of the genus from the eastern Caribbean and the Persian Gulf in the northwest Indian Ocean. We compare the morphological features of specimens, together with molecular data from three commonly used barcoding markers (COI, mtMutS, 28S rDNA) and 308 ultraconserved elements (UCE) and exon loci sequenced using a target-enrichment approach. The molecular and morphological data together suggest that specimens from all three localities are the same species, i.e., Stragulum bicolor van Ofwegen and Haddad, 2011. It is still not possible to establish the native range of the species or determine whether it may be an introduced species due to the limited number of specimens included in this study. However, the lack of historical records, its fouling abilities on artificial substrates, and a growing number of observations support the invasive nature of the species in Brazilian and Caribbean waters and therefore suggest that it may have been introduced into the Atlantic from elsewhere. Interestingly, the species has not shown any invasive behaviour in the Persian Gulf, where it has been found only on natural, rocky substrates. The aim of the present report is to create awareness of this taxon with the hope that this will lead to new records from other localities and help to establish its native range

    Ceres' opposition effect observed by the Dawn framing camera

    Get PDF
    The surface reflectance of planetary regoliths may increase dramatically towards zero phase angle, a phenomenon known as the opposition effect (OE). Two physical processes that are thought to be the dominant contributors to the brightness surge are shadow hiding (SH) and coherent backscatter (CB). The occurrence of shadow hiding in planetary regoliths is self-evident, but it has proved difficult to unambiguously demonstrate CB from remote sensing observations. One prediction of CB theory is the wavelength dependence of the OE angular width. The Dawn spacecraft observed the OE on the surface of dwarf planet Ceres. We characterize the OE over the resolved surface, including the bright Cerealia Facula, and to find evidence for SH and/or CB. We analyze images of the Dawn framing camera by means of photometric modeling of the phase curve. We find that the OE of most of the investigated surface has very similar characteristics, with an enhancement factor of 1.4 and a FWHM of 3{\deg} (broad OE). A notable exception are the fresh ejecta of the Azacca crater, which display a very narrow brightness enhancement that is restricted to phase angles <0.5< 0.5{\deg} (narrow OE); suggestively, this is in the range in which CB is thought to dominate. We do not find a wavelength dependence for the width of the broad OE, and lack the data to investigate the dependence for the narrow OE. The prediction of a wavelength-dependent CB width is rather ambiguous. The zero-phase observations allow us to determine Ceres' visible geometric albedo as pV=0.094±0.005p_V = 0.094 \pm 0.005. A comparison with other asteroids suggests that Ceres' broad OE is typical for an asteroid of its spectral type, with characteristics that are primarily linked to surface albedo. Our analysis suggests that CB may occur on the dark surface of Ceres in a highly localized fashion.Comment: Credit: Schr\"oder et al, A&A in press, 2018, reproduced with permission, \copyright ES
    • …
    corecore