7,991 research outputs found
Constraining holographic inflation with WMAP
In a class of recently proposed models, the early universe is strongly
coupled and described holographically by a three-dimensional, weakly coupled,
super-renormalizable quantum field theory. This scenario leads to a power
spectrum of scalar perturbations that differs from the usual empirical LCDM
form and the predictions of generic models of single field, slow roll
inflation. This spectrum is characterized by two parameters: an amplitude, and
a parameter g related to the coupling constant of the dual theory. We estimate
these parameters, using WMAP and other astrophysical data. We compute Bayesian
evidence for both the holographic model and standard LCDM and find that their
difference is not significant, although LCDM provides a somewhat better fit to
the data. However, it appears that Planck will permit a definitive test of this
holographic scenario.Comment: 24 pages, 9 figs, published versio
Gating of high-mobility InAs metamorphic heterostructures
We investigate the performance of gate-defined devices fabricated on high
mobility InAs metamorphic heterostructures. We find that heterostructures
capped with InGaAs often show signs of parallel conduction
due to proximity of their surface Fermi level to the conduction band minimum.
Here, we introduce a technique that can be used to estimate the density of this
surface charge that involves cool-downs from room temperature under gate bias.
We have been able to remove the parallel conduction under high positive bias,
but achieving full depletion has proven difficult. We find that by using
InAlAs as the barrier without an InGaAs
capping, a drastic reduction in parallel conduction can be achieved. Our
studies show that this does not change the transport properties of the quantum
well significantly. We achieved full depletion in InAlAs capped
heterostructures with non-hysteretic gating response suitable for fabrication
of gate-defined mesoscopic devices
Autoplan: A self-processing network model for an extended blocks world planning environment
Self-processing network models (neural/connectionist models, marker passing/message passing networks, etc.) are currently undergoing intense investigation for a variety of information processing applications. These models are potentially very powerful in that they support a large amount of explicit parallel processing, and they cleanly integrate high level and low level information processing. However they are currently limited by a lack of understanding of how to apply them effectively in many application areas. The formulation of self-processing network methods for dynamic, reactive planning is studied. The long-term goal is to formulate robust, computationally effective information processing methods for the distributed control of semiautonomous exploration systems, e.g., the Mars Rover. The current research effort is focusing on hierarchical plan generation, execution and revision through local operations in an extended blocks world environment. This scenario involves many challenging features that would be encountered in a real planning and control environment: multiple simultaneous goals, parallel as well as sequential action execution, action sequencing determined not only by goals and their interactions but also by limited resources (e.g., three tasks, two acting agents), need to interpret unanticipated events and react appropriately through replanning, etc
NASA's Dawn Mission to Asteroid 4 Vesta
NASA's Dawn Mission to asteroid 4 Vesta is part of a 13-year robotic space project designed to reveal the nature of two of the largest asteroids in the Main Asteroid Belt of our Solar System. Ceres and Vesta are two complementary terrestrial protoplanets whose accretion was probably terminated by the formation of Jupiter. They provide a bridge in our understanding between the rocky bodies of the inner solar system and the icy bodies of the outer solar system. Ceres appears to be undifferentiated Vesta has experienced significant heating and likely differentiation. Both formed very early in history of the solar system and while suffering many impacts have remained intact, thereby retaining a record of events and processes from the time of planet formation. Detailed study of the geophysics and geochemistry of these two bodies provides critical benchmarks for early solar system conditions and processes that shaped its subsequent evolution. Dawn provides the missing context for both primitive and evolved meteoritic data, thus playing a central role in understanding terrestrial planet formation and the evolution of the asteroid belt. Dawn is to he launched in 2006 arriving at Vesta in 20l0 and Ceres in 2014, stopping at each to make 11 months of orbital measurements. The spacecraft uses solar electric propulsion, both in cruise and in orbit, to make most efficient use of its xenon propellant. The spacecraft carries a framing camera, visible and infrared mapping spectrometer, gamma ray/neutron magnetometer, and radio science
Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions
Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure
- …