62 research outputs found

    Muscarinic Receptor Sequestration in SH-SY5Y Neuroblastoma Cells Is Inhibited when Clathrin Distribution Is Perturbed

    Full text link
    The possibility that clathrin plays a role in the agonist-mediated sequestration of muscarinic cholinergic receptors in human SH-SY5Y neuroblastoma cells has been investigated by the application of experimental paradigms previously established to perturb clathrin distribution and receptor cycling events. Preincubation of SH-SY5Y cells under hypertonic conditions resulted in a pronounced inhibition of agonist-induced muscarinic receptor sequestration (70–80% at 550 mOsm), which was reversed when cells were returned to isotonic medium. Depletion of intracellular K + or acidification of the cytosol also resulted in >80% inhibition of muscarinic receptor sequestration. Under conditions of hypertonicity, depletion of intracellular K + , or acidification of cytosol, muscarinic receptor-stimulated phosphoinositide hydrolysis and Ca 2+ signaling events were either unaffected or markedly less inhibited than receptor sequestration. That these same experimental conditions did perturb clathrin distribution was verified by immunofluorescence studies. Hypertonicity and depletion of intracellular K + resulted in a pronounced accumulation of clathrin in the perinuclear region, whereas acidification of the cytosol resulted in the appearance of microaggregates of clathrin throughout the cytoplasm and at the plasma membrane. The results are consistent with the possibility that muscarinic receptors in SH-SY5Y cells are endocytosed via a clathrin-dependent mechanism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66348/1/j.1471-4159.1996.66010186.x.pd

    Agonist-Induced Endocytosis of Muscarinic Cholinergic Receptors: Relationship to Stimulated Phosphoinositide Turnover

    Full text link
    The ability of muscarinic cholinergic receptors to activate phosphoinositide turnover following agonist-induced internalization has been investigated. Incubation of SH-SY5Y neuroblastoma cells with oxotremorine-M resulted in a time-dependent endocytosis of both muscarinic receptors and Α subunits of G q and G 11 , but not of isoforms of phosphoinositide-specific phospholipase C, into a subfraction of smooth endoplasmic reticulum (V 1 ). Agonist-induced increases in diacylglycerol mass and in 32 P-phosphatidate labeling, much of which was of the tetraenoic species, were also observed in the V 1 fraction, but these increases persisted when the agonist-induced translocation of receptors into the V 1 fraction was blocked. All enzymes of the phosphoinositide cycle were detectable in the V 1 fraction. However, with the exception of phosphatidylinositol 4-kinase, none was enriched when compared with cell lysates. Both 32 P-labeling studies and enzyme assays point to a very limited capacity of this fraction to synthesize phosphatidylinositol 4,5-bisphosphate, whereas the synthesis of phosphatidylinositol 4-phosphate is robust. These results indicate that endocytosed receptors do not appear to retain their ability to activate phosphoinositide turnover. The availability of the substrate for phospholipase C, phosphatidylinositol 4,5-bisphosphate, may be one factor that limits the activity of muscarinic receptors in this subcellular compartment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65644/1/j.1471-4159.1997.68041473.x.pd

    Cytoskeletal and Phosphoinositide Requirements for Muscarinic Receptor Signaling to Focal Adhesion Kinase and Paxillin

    Full text link
    The mechanism whereby agonist occupancy of muscarinic cholinergic receptors elicits an increased tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin has been examined. Addition of oxotremorine-M to SH-SY5Y neuroblastoma cells resulted in rapid increases in the phosphorylation of FAK ( t 1/2 = 2 min) and paxillin that were independent of integrin-extracellular matrix interactions, cell attachment, and the production of phosphoinositide-derived second messengers. In contrast, the increased tyrosine phosphorylations of FAK and paxillin were inhibited by inclusion of either cytochalasin D or mevastatin, agents that disrupt the cytoskeleton. Furthermore, phosphorylation of FAK and paxillin could be prevented by addition of either wortmannin or LY-294002, under conditions in which the synthesis of phosphatidylinositol 4-phosphate was markedly attenuated. These results indicate that muscarinic receptor-mediated increases in the tyrosine phosphorylation of FAK and paxillin in SH-SY5Y neuroblastoma cells depend on both the maintenance of an actin cytoskeleton and the ability of these cells to synthesize phosphoinositides.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66183/1/j.1471-4159.1998.70030940.x.pd

    Agonist-Specific Calcium Signaling and Phosphoinositide Hydrolysis in Human SK-N-MCIXC Neuroepithelioma Cells

    Full text link
    Fura-2 digital imaging microfluorimetry was used to evaluate the Ca 2+ signals generated in single clonal human neuroepithelioma cells (SK-N-MCIXC) in response to agonists that stimulate phosphoinositide hydrolysis. Addition of optimal concentrations of either endothelin-1 (ET-1), ATP, oxotremorine-M (Oxo-M), or norepinephrine (NE) all resulted in an increase in the concentration of cytosolic calcium (Ca 2+ i ) but of different magnitudes (ET-1 = ATP> NE). The Ca 2+ signals elicited by the individual agonists also differed from each other in terms of their latency of onset, rate of rise and decay, and prevalence of a sustained phase of Ca 2+ influx. The Ca 2+ signals that occurred in response to ATP had a shorter latency and more rapid rates of rise and decay than those observed for the other three agonists. Furthermore, a sustained plateau phase of the Ca 2+ signal, which was characteristic of the response to Oxo-M, was observed in 94% of cells responded to ET-1 or ATP, whereas corresponding values for Oxo-M and NE were ∼74 and ∼48%. Sequential addition of agonists to cells maintained in a Ca 2+ -free buffer indicated that each ligand mobilized Ca 2+ from a common intracellular pool. When monitored as a release of a total inositol phosphate fraction, all four agonists elicited similar (four- to sixfold) increases in phosphoinositide hydrolysis. However, the addition of ET-1 or ATP resulted in larger increases in the net formation of inositol 1,4,5-trisphosphate than did either Oxo-M or NE. These results indicate that, in SK-N-MCIXC cells, the characteristics of both Ca 2+ signaling and inositol phosphate production are agonist specific.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66414/1/j.1471-4159.1994.63062099.x.pd

    Contribution of G Protein Activation to Fluoride Stimulation of Phosphoinositide Hydrolysis in Human Neuroblastoma Cells

    Full text link
    To examine the possibility that NaF enhances phosphoinositide-specific phospholipase C (PIC) activity in neural tissues by a mechanism independent of a guanine nucleotide binding protein (G p ), we have evaluated the contribution of G p activation to NaF-stimulated phosphoinositide hydrolysis in human SK-N-SH neuroblastoma cells. Addition of NaF to intact cells resulted in an increase in the release of inositol phosphates (450% of control values; EC 50 of ∼ 8 m M ). Inclusion of U-73122, an aminosteroid inhibitor of guanine nucleotide-regulated PIC activity in these cells, resulted in a dose-dependent inhibition of NaF-stimulated inositol lipid hydrolysis (IC 50 of ∼ 3.5 Μ M ). When added to digitonin-permeabilized cells, NaF or guanosine-5′- O -thiotriphosphate (GTPΓS) resulted in a three- and sevenfold enhancement, respectively, of inositol phosphate release. In the combined presence of optimal concentrations of NaF and GTPΓS, inositol phosphate release was less than additive, indicative of a common site of action. Inclusion of 2–5 m M concentrations of guanosine-5′- O -(2-thiodiphosphate) (GDPΒS) fully blocked phosphoinositide hydrolysis elicited by GTPΓS, whereas that induced by NaF was partially inhibited (65%). However, preincubation of the cells with GDPΒS resulted in a greater reduction in the ability of NaF to stimulate inositol phosphate release (87% inhibition). Both GTPΓS and NaF-stimulated inositol phosphate release were inhibited by inclusion of 10 Μ M U-73122 (54–71%). The presence of either NaF or GTPΓS also resulted in a marked lowering of the Ca 2+ requirement for activation of PIC in permeabilized cells. These results indicate that in SK-N-SH cells, little evidence exists for direct stimulation of PIC by NaF and that the majority of inositol phosphate release that occurs in the presence of NaF can be attributed to activation of G p .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65259/1/j.1471-4159.1993.tb13406.x.pd

    A rapid attenuation of muscarinic agonist stimulated phosphoinositide hydrolysis precedes receptor sequestration in human SH-SY-5Y neuroblastoma cells

    Full text link
    Agonist occupancy of muscarinic cholinergic receptors in human SH-SY-5Y neuroblastoma cells elicited two kinetically distinct phases of phosphoinositide hydrolysis when monitored by either an increased mass of inositol 1,4,5-trisphosphate, or the accumulation of a total inositol phosphate fraction. Within 5s of the addition of the muscarinic agonist, oxotremorine-M, the phosphoinositide pool was hydrolyzed at a maximal rate of 9.5%/min. This initial phase of phosphoinositide hydrolysis was short-lived (t 1/2 =14s) and after 60s of agonist exposure, the rate of inositol lipid breakdown had declined to a steady state level of 3.4%/min which was then maintained for at least 5–10 min. This rapid, but partial, attenuation of muscarinic receptor stimulated phosphoinositide hydrolysis occurred prior to the agonist-induced internalization of muscarinic receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45408/1/11064_2004_Article_BF00971329.pd

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Oral Abstracts 7: RA ClinicalO37. Long-Term Outcomes of Early RA Patients Initiated with Adalimumab Plus Methotrexate Compared with Methotrexate Alone Following a Targeted Treatment Approach

    Get PDF
    Background: This analysis assessed, on a group level, whether there is a long-term advantage for early RA patients treated with adalimumab (ADA) + MTX vs those initially treated with placebo (PBO) + MTX who either responded to therapy or added ADA following inadequate response (IR). Methods: OPTIMA was a 78- week, randomized, controlled trial of ADA + MTX vs PBO + MTX in MTX-naïve early (<1 year) RA patients. Therapy was adjusted at week 26: ADA + MTX-responders (R) who achieved DAS28 (CRP) <3.2 at weeks 22 and 26 (Period 1, P1) were re-randomized to withdraw or continue ADA and PBO + MTX-R continued randomized therapy for 52 weeks (P2); IR-patients received open-label (OL) ADA + MTX during P2. This post hoc analysis evaluated the proportion of patients at week 78 with DAS28 (CRP) <3.2, HAQ-DI <0.5, and/or ΔmTSS ≤0.5 by initial treatment. To account for patients who withdrew ADA during P2, an equivalent proportion of R was imputed from ADA + MTX-R patients. Results: At week 26, significantly more patients had low disease activity, normal function, and/or no radiographic progression with ADA + MTX vs PBO + MTX (Table 1). Differences in clinical and functional outcomes disappeared following additional treatment, when PBO + MTX-IR (n = 348/460) switched to OL ADA + MTX. Addition of OL ADA slowed radiographic progression, but more patients who received ADA + MTX from baseline had no radiographic progression at week 78 than patients who received initial PBO + MTX. Conclusions: Early RA patients treated with PBO + MTX achieved comparable long-term clinical and functional outcomes on a group level as those who began ADA + MTX, but only when therapy was optimized by the addition of ADA in PBO + MTX-IR. Still, ADA + MTX therapy conferred a radiographic benefit although the difference did not appear to translate to an additional functional benefit. Disclosures: P.E., AbbVie, Merck, Pfizer, UCB, Roche, BMS—Provided Expert Advice, Undertaken Trials, AbbVie—AbbVie sponsored the study, contributed to its design, and participated in the collection, analysis, and interpretation of the data, and in the writing, reviewing, and approval of the final version. R.F., AbbVie, Pfizer, Merck, Roche, UCB, Celgene, Amgen, AstraZeneca, BMS, Janssen, Lilly, Novartis—Research Grants, Consultation Fees. S.F., AbbVie—Employee, Stocks. A.K., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, Pfizer, Roche, UCB—Research Grants, Consultation Fees. H.K., AbbVie—Employee, Stocks. S.R., AbbVie—Employee, Stocks. J.S., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, GlaxoSmithKline, Lilly, Pfizer (Wyeth), MSD (Schering-Plough), Novo-Nordisk, Roche, Sandoz, UCB—Research Grants, Consultation Fees. R.V., AbbVie, BMS, GlaxoSmithKline, Human Genome Sciences, Merck, Pfizer, Roche, UCB Pharma—Consultation Fees, Research Support. Table 1.Week 78 clinical, functional, and radiographic outcomes in patients who received continued ADA + MTX vs those who continued PBO + MTX or added open-label ADA following an inadequate response ADA + MTX, n/N (%)a PBO + MTX, n/N (%)b Outcome Week 26 Week 52 Week 78 Week 26 Week 52 Week 78 DAS28 (CRP) <3.2 246/466 (53) 304/465 (65) 303/465 (65) 139/460 (30)*** 284/460 (62) 300/460 (65) HAQ-DI <0.5 211/466 (45) 220/466 (47) 224/466 (48) 150/460 (33)*** 203/460 (44) 208/460 (45) ΔmTSS ≤0.5 402/462 (87) 379/445 (86) 382/443 (86) 330/459 (72)*** 318/440 (72)*** 318/440 (72)*** DAS28 (CRP) <3.2 + ΔmTSS ≤0.5 216/462 (47) 260/443 (59) 266/443 (60) 112/459 (24)*** 196/440 (45) 211/440 (48)*** DAS28 (CRP) <3.2 + HAQ-DI <0.5 + ΔmTSS ≤0.5 146/462 (32) 168/443 (38) 174/443 (39) 82/459 (18)*** 120/440 (27)*** 135/440 (31)** aIncludes patients from the ADA Continuation (n = 105) and OL ADA Carry On (n = 259) arms, as well as the proportional equivalent number of responders from the ADA Withdrawal arm (n = 102). bIncludes patients from the MTX Continuation (n = 112) and Rescue ADA (n = 348) arms. Last observation carried forward: DAS28 (CRP) and HAQ-DI; Multiple imputations: ΔmTSS. ***P < 0.001 and **iP < 0.01, respectively, for differences between initial treatments from chi-squar
    corecore