40 research outputs found

    Team Dynamics Theory: Nomological network among cohesion, team mental models, coordination, and collective efficacy

    Get PDF
    I put forth a theoretical framework, namely Team Dynamics Theory (TDT), to address the need for a parsimonious yet integrated, explanatory and systemic view of team dynamics. In TDT, I integrate team processes and outputs and explain their relationships within a systemic view of team dynamics. Specifically, I propose a generative nomological network linking cohesion, team mental models, coordination, collective efficacy, and team outcomes. From this nomological conceptualization, I illustrate how myriad alternative models can be derived to account for variance in different working teams, each comprised of unique members, and embedded in singular contexts. I outline TDT’s applied implications for team development, the enhancement of team functioning, and the profiling of team resilience. I conclude by discussing how TDT’s ontological and nomological propositions can be tested through various theoretical inquiries, methodological approaches, and intervention-based studies

    Type-I Interferons in Alzheimer's Disease and Other Tauopathies

    No full text
    The detection of pathogen-associated molecular patterns can elicit the production of type-I interferons (IFNs), soluble cytokines that induce a transcriptional state inhibitory to viral replication. Signatures of type-I IFN-driven gene expression, and type-I IFNs themselves, are observed in the central nervous system during neurodegenerative diseases including Alzheimer's disease and other tauopathies, the umbrella term for diseases that feature aggregation of the cytosolic protein tau. The contribution of the type-I IFN response to pathological progression of these diseases, however, is not well-understood. The wholesale transcriptional changes that ensue from type-I IFN production can both promote protective effects and lead to damage dependent on the context and duration of the response. The type-I IFN system therefore represents a signaling pathway with a potential disease-modifying role in the progression of neurodegenerative disease. In this review we summarize the evidence for a type-I IFN signature in AD and other tauopathies and examine the role of aggregated proteins as inflammatory stimuli. We explore both the protective role of IFN against protein pathologies as well as their downstream toxic consequences, which include the exacerbation of protein pathology as a potentially destructive feed-forward loop. Given the involvement of type-I IFNs in other neurogenerative diseases, we draw comparisons with other categories of homotypic protein aggregation. Understanding how type-I IFN influences progression of AD and other tauopathies may yield important insight to neurodegeneration and identify new targets in an area currently lacking disease-modifying therapies
    corecore