60 research outputs found

    A Golden Age of Security and Education? Adult Education for Civil Defence in the United States 1950–1970

    Get PDF
    A number of authors consider that the early period of US security and education (1950–1970) was in some way a ‘golden age’ where there was a prevailing societal orientation towards civil defence. This is supported, to some extent, through ‘Duck and Cover’ type activities in schools and in community preparedness efforts. This article considers whether this portrayal is necessarily correct in the case of adult education. From an analysis of previously classified historical archives in the US National Archives II at the University of Maryland, I consider the success of the civil defense adult education programme (CDAE), and earlier adult education courses, from 1950 to 1970. Rather than being a ‘bottom-up’ process, CDAE was imposed on educators directly through an executive order. There was considerable resistance to the CDAE from other areas of government, from states and from students. CDAE had limited success only so much as the Department of Health and Welfare (DHEW) was able to reconcile it with their own educational objectives. The article concludes by considering the implications of these findings for contemporary adult education for emergencies

    US hegemony and the origins of Japanese nuclear power : the politics of consent

    Get PDF
    This paper deploys the Gramscian concepts of hegemony and consent in order to explore the process whereby nuclear power was brought to Japan. The core argument is that nuclear power was brought to Japan as a consequence of US hegemony. Rather than a simple manifestation of one state exerting material ‘power over' another, bringing nuclear power to Japan involved a series of compromises worked out within and between state and civil society in both Japan and the USA. Ideologies of nationalism, imperialism and modernity underpinned the process, coalescing in post-war debates about the future trajectory of Japanese society, Japan's Cold War alliance with the USA and the role of nuclear power in both. Consent to nuclear power was secured through the generation of a psychological state in the public mind combining the fear of nuclear attack and the hope of unlimited consumption in a nuclear-fuelled post-modern world

    Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniques

    No full text
    Molybdenum phosphide (MoP) catalyzes the hydrogenation of CO, CO2 , and their mixtures to methanol, and it is investigated as a high-activity catalyst that overcomes deactivation issues (e.g., formate poisoning) faced by conventional transition metal catalysts. MoP as a new catalyst for hydrogenating CO2 to methanol is particularly appealing for the use of CO2 as chemical feedstock. Herein, we use a colloidal synthesis technique that connects the presence of MoP to the formation of methanol from CO2 , regardless of the support being used. By conducting a systematic support study, we see that zirconia (ZrO2 ) has the striking ability to shift the selectivity towards methanol by increasing the rate of methanol conversion by two orders of magnitude compared to other supports, at a CO2 conversion of 1.4% and methanol selectivity of 55.4%. In situ X-ray Absorption Spectroscopy (XAS) and in situ X-ray Diffraction (XRD) indicate that under reaction conditions the catalyst is pure MoP in a partially crystalline phase. Results from Diffuse Reflectance Infrared Fourier Transform Spectroscopy coupled with Temperature Programmed Surface Reaction (DRIFTSTPSR) point towards a highly reactive monodentate formate intermediate stabilized by the strong interaction of MoP and ZrO2 . This study definitively shows that the presence of a MoP phase leads to methanol formation from CO2 , regardless of support and that the formate intermediate on MoP governs methanol formation rate

    Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniques

    No full text
    Molybdenum phosphide (MoP) catalyzes the hydrogenation of CO, CO2, and their mixtures to methanol, and it is investigated as a high-activity catalyst that overcomes deactivation issues (e.g., formate poisoning) faced by conventional transition metal catalysts. MoP as a new catalyst for hydrogenating CO2 to methanol is particularly appealing for the use of CO2 as chemical feedstock. Herein, we use a colloidal synthesis technique that connects the presence of MoP to the formation of methanol from CO2, regardless of the support being used. By conducting a systematic support study, we see that zirconia (ZrO2) has the striking ability to shift the selectivity towards methanol by increasing the rate of methanol conversion by two orders of magnitude compared to other supports, at a CO2 conversion of 1.4% and methanol selectivity of 55.4%. In situ X-ray Absorption Spectroscopy (XAS) and in situ X-ray Diffraction (XRD) indicate that under reaction conditions the catalyst is pure MoP in a partially crystalline phase. Results from Diffuse Reflectance Infrared Fourier Transform Spectroscopy coupled with Temperature Programmed Surface Reaction (DRIFTS-TPSR) point towards a highly reactive monodentate formate intermediate stabilized by the strong interaction of MoP and ZrO2. This study definitively shows that the presence of a MoP phase leads to methanol formation from CO2, regardless of support and that the formate intermediate on MoP governs methanol formation rate
    • …
    corecore