336 research outputs found
Organizing Activity Among University Clerical Workers
[Excerpt] As union membership has declined and blue-collar employment has contracted, union organizers have shifted their attention to white-collar workers in the largely nonunion service sector. Interviews with union organizers indicate that a disproportionate share of this organizing activity has been aimed at college and university clerical employees. In order to gain a better understanding of this activity, two avenues of inquiry were pursued. Interviews were conducted with 48 union officials who have been involved in university clerical organizing. In addition, a questionnaire concerning the unionization of clerical workers was mailed in 1986 to personnel directors of all colleges and universities in New England with accredited bachelor\u27s degree programs.
This paper summarizes the interviews with union officials, focusing on factors which influence organizing success among university clericals. The hypotheses which are developed are then subjected to econometric analysis using data from the survey of personnel directors and other sources
Keck Imaging of Binary L Dwarfs
We present Keck near-infrared imaging of three binary L dwarf systems, all of
which are likely to be sub-stellar. Two are lithium dwarfs, and a third
exhibits an L7 spectral type, making it the coolest binary known to date. All
have component flux ratios near 1 and projected physical separations between 5
and 10 AU, assuming distances of 18 to 26 pc from recent measurements of
trigonometric parallax. These surprisingly similar binaries represent the sole
detections of companions in ten L dwarf systems which were analyzed in the
preliminary phase of a much larger dual-epoch imaging survey. The detection
rate prompts us to speculate that binary companions to L dwarfs are common,
that similar-mass systems predominate, and that their distribution peaks at
radial distances in accord both with M dwarf binaries and with the radial
location of Jovian planets in our own solar system. To fully establish these
conjectures against doubts raised by biases inherent in this small preliminary
survey, however, will require quantitative analysis of a larger volume-limited
sample which has been observed with high resolution and dynamic range.Comment: LaTex manuscript in 13 pages, 3 postscript figures, Accepted for
publication in the Letters of the Astrophysical Journal; Postscript pre-print
version available at: http://www.hep.upenn.edu/PORG/papers/koerner99a.p
Modeling the growth of multicellular cancer spheroids in a\ud bioengineered 3D microenvironment and their treatment with an\ud anti-cancer drug
A critical step in the dissemination of ovarian cancer cells is the formation of multicellular spheroids from cells shed from the primary tumor. The objectives of this study were to establish and validate bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer cells in vitro and simultaneously to develop computational models describing the growth of multicellular spheroids in these bioengineered matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and cultured for up to 4 weeks. Immunohistochemistry was used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel.\ud
\ud
Two computational models were developed. In the first model, each spheroid was treated as an incompressible porous medium, whereas in the second model the concept of morphoelasticity was used to incorporate details about internal stresses and strains. Each model was formulated as a free boundary problem. Functional forms for cell proliferation and apoptosis motivated by the experimental work were applied and the predictions of both models compared with the output from the experiments. Both models simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture time and treatment with paclitaxel. Our mathematical models provide new perspectives on previous experimental results and have informed the design of new 3D studies of multicellular cancer spheroids
Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach
We have integrated a bioengineered three-dimensional platform by generating multicellular cancer spheroids in a controlled microenvironment with a mathematical model to investigate\ud
confined tumour growth and to model its impact on cellular processes
Commissioning and performance results of the WFIRST/PISCES integral field spectrograph
The Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies
(PISCES) is a high contrast integral field spectrograph (IFS) whose design was
driven by WFIRST coronagraph instrument requirements. We present commissioning
and operational results using PISCES as a camera on the High Contrast Imaging
Testbed at JPL. PISCES has demonstrated ability to achieve high contrast
spectral retrieval with flight-like data reduction and analysis techniques.Comment: Author's copy - Proceedings of SPIE Volume 10400. Citation to SPIE
proceedings volume will be added when availabl
Occultation Spectrophotometry of Extrasolar Planets with SOFIA
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5- meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micrometer photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft., where the average atmospheric transmission is greater than 80 percent. SOFIA's first light cameras and spectrometers, as well as future generations of instruments, will make important contributions to the characterization of the physical properties of exoplanets. Our analysis shows that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPOFLITECAM optical/NIR instruments. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in this field of research which we will outline here. Furthermore we will present two exemplary science cases, that will be conducted in SOFIA's cycle 1
Simulating the WFIRST coronagraph Integral Field Spectrograph
A primary goal of direct imaging techniques is to spectrally characterize the
atmospheres of planets around other stars at extremely high contrast levels. To
achieve this goal, coronagraphic instruments have favored integral field
spectrographs (IFS) as the science cameras to disperse the entire search area
at once and obtain spectra at each location, since the planet position is not
known a priori. These spectrographs are useful against confusion from speckles
and background objects, and can also help in the speckle subtraction and
wavefront control stages of the coronagraphic observation. We present a
software package, the Coronagraph and Rapid Imaging Spectrograph in Python
(crispy) to simulate the IFS of the WFIRST Coronagraph Instrument (CGI). The
software propagates input science cubes using spatially and spectrally resolved
coronagraphic focal plane cubes, transforms them into IFS detector maps and
ultimately reconstructs the spatio-spectral input scene as a 3D datacube.
Simulated IFS cubes can be used to test data extraction techniques, refine
sensitivity analyses and carry out design trade studies of the flight CGI-IFS
instrument. crispy is a publicly available Python package and can be adapted to
other IFS designs.Comment: 15 page
Resolved Spectroscopy of M Dwarf/L Dwarf Binaries. I. DENIS J220002.05-303832.9AB
We present the discovery of the common proper motion M9 + L0 binary DENIS
J220002.05-303832.9AB, identified serendipitously with the SpeX near infrared
imager/spectrograph. Spectral types are derived from resolved near infrared
spectroscopy of the well-separated (1"09+/-0"06) components and comparison to
equivalent data for M and L dwarf spectral standards. Physical association is
deduced from the angular proximity of the sources, their common proper motion
and their similar spectrophotometric distances (35+/-2 pc). The estimated
distance of this pair implies a projected separation of 38+/-3 AU, wider than
typical separations for other M dwarf/L dwarf binaries, but consistent with the
maximum separation/total system mass trend previously identified by Burgasser
et al. (2003). We discuss the DENIS 2200-3038AB system in context with other
low mass binaries, and its role in studying dust formation processes and
activity trends across the transition between the M and L dwarf spectral
classes.Comment: 11 pages, 3 figures, accepted for publication in Astronomical Journa
- …