18 research outputs found

    Inhaled hypertonic saline for cystic fibrosis: reviewing the potential evidence for modulation of neutrophil signalling and function.

    Get PDF
    Cystic fibrosis (CF) is a multisystem disorder with significantly shortened life expectancy. The major cause of mortality and morbidity is lung disease with increasing pulmonary exacerbations and decline in lung function predicting significantly poorer outcomes. The pathogenesis of lung disease in CF is characterised in part by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. This leads to accumulation of viscous mucus in the CF airway, providing an ideal environment for bacterial pathogens to grow and colonise, propagating airway inflammation in CF. The use of nebulised hypertonic saline (HTS) treatments has been shown to improve mucus clearance in CF and impact positively upon exacerbations, quality of life, and lung function. Several mechanisms of HTS likely improve outcome, resulting in clinically relevant enhancement in disease parameters related to increase in mucociliary clearance. There is increasing evidence to suggest that HTS is also beneficial through its anti-inflammatory properties and its ability to reduce bacterial activity and biofilm formation. This review will first describe the use of HTS in treatment of CF focusing on its efficacy and tolerability. The emphasis will then change to the potential benefits of aerosolized HTS for the attenuation of receptor mediated neutrophil functions, including down-regulation of oxidative burst activity, adhesion molecule expression, and the suppression of neutrophil degranulation of proteolytic enzymes

    The effect of the decoy molecule PA401 on CXCL8 levels in bronchoalveolar lavage fluid of patients with cystic fibrosis.

    Get PDF
    BACKGROUND: The chemokine interleukin-8 (CXCL8) is a key mediator of inflammation in airways of patients with cystic fibrosis (CF). Glycosaminoglycans (GAGs) possess the ability to influence the chemokine profile of the CF lung by binding CXCL8 and protecting it from proteolytic degradation. CXCL8 is maintained in an active state by this glycan interaction thus increasing infiltration of immune cells such as neutrophils into the lungs. As the CXCL8-based decoy PA401 displays no chemotactic activity, yet demonstrates glycan binding affinity, the aim of this study was to investigate the anti-inflammatory effect of PA401 on CXCL8 levels, and activity, in CF airway samples in vitro. METHODS: Bronchoalveolar lavage fluid (BALF) was collected from patients with CF homozygous for the ΔF508 mutation (n=13). CXCL8 in CF BALF pre and post exposure to PA401 was quantified by ELISA. Western blot analysis was used to determine PA401 degradation in CF BALF. The ex vivo chemotactic activity of purified neutrophils in response to CF airway secretions was evaluated post exposure to PA401 by use of a Boyden chamber-based motility assay. RESULTS: Exposure of CF BALF to increasing concentrations of PA401 (50-1000pg/ml) over a time course of 2-12h in vitro, significantly reduced the level of detectable CXCL8 (P CONCLUSION: PA401 can disrupt CXCL8:GAG complexes, rendering the chemokine susceptible to proteolytic degradation. Clinical application of a CXCL8 decoy, such as PA401, may serve to decrease the inflammatory burden in the CF lung in vivo

    Augmentation Therapy for Severe Alpha-1 Antitrypsin Deficiency Improves Survival and Is Decoupled from Spirometric Decline—A Multinational Registry Analysis

    Full text link
    Rationale: Intravenous plasma-purified alpha-1 antitrypsin (IV-AAT) has been used as therapy for alpha-1 antitrypsin deficiency (AATD) since 1987. Previous trials (RAPID and RAPID-OLE) demonstrated efficacy in preserving computed tomography of lung density but no effect on FEV1. This observational study evaluated 615 people with severe AATD from three countries with socialized health care (Ireland, Switzerland, and Austria), where access to standard medical care was equal but access to IV-AAT was not. Objectives: To assess the real-world longitudinal effects of IV-AAT. Methods: Pulmonary function and mortality data were utilized to perform longitudinal analyses on registry participants with severe AATD. Measurements and Main Results: IV-AAT confers a survival benefit in severe AATD (P < 0.001). We uncovered two distinct AATD phenotypes based on an initial respiratory diagnosis: lung index and non-lung index. Lung indexes demonstrated a more rapid FEV1 decline between the ages of 20 and 50 and subsequently entered a plateau phase of minimal decline from 50 onward. Consequentially, IV-AAT had no effect on FEV1 decline, except in patients with a Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 2 lung index. Conclusions: This real-world study demonstrates a survival advantage from IV-AAT. This improved survival is largely decoupled from FEV1 decline. The observation that patients with severe AATD fall into two major phenotypes has implications for clinical trial design where FEV1 is a primary endpoint. Recruits into trials are typically older lung indexes entering the plateau phase and, therefore, unlikely to show spirometric benefits. IV-AAT attenuates spirometric decline in lung indexes in GOLD stage 2, a spirometric group commonly outside current IV-AAT commencement recommendations

    Metabolic Reprogramming of the Cystic Fibrosis Neutrophil

    No full text
    Cystic fibrosis (CF) is the commonest lethal genetic condition affecting Caucasians, arising from a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene on the long arm of chromosome 7. It is a chloride channelopathy, manifesting clinically as a multisystem disorder. The major cause of morbidity and mortality in CF is neutrophilic lung disease, though significant debate exists as to whether the main determinant of this is an intrinsic defect due to defective CFTR within the CF cell, or rather the frequent cycles of infection and sustained inflammation that characterize the condition. Here we show a potential role for metabolic reprogramming in CF airways inflammation, demonstrating the existence of upregulated aerobic glycolysis, known as a Warburg effect, in the CF neutrophil, with implications for intracellular pH regulation and release of the master pro-inflammatory cytokine interleukin (IL)-1β. This shift to a state of increased aerobic glycolysis relies on an intact PKM2/succinate/HIF-1α axis and results in decreased cytosolic pH and increased production of lactate and the IL-1β precursor pro-IL-1β, it’s processing in the lung driven by the NLRP3 inflammasome via caspase-1. We demonstrate that IL-1β levels are significantly increased in the CF lung, and identify IL-1β as an airway biomarker of CF lung disease severity by correlating it with accepted measures of clinical outcome such as FEV1 and the CF-ABLE score, a validated CF-specific clinical prognostic tool developed by this group. We show that this phenomenon is driven by inflammation, rather than an intrinsic CFTR defect, and is abrogated both by inhibition of Warburg metabolism and specific inhibition of NLRP3 by small molecules in vivo, identifying the 4 inflammasome as a therapeutic target in CF. This study also describes the development of Temperature-controlled Two-step Rapid Isolation of Sputum (TETRIS), a specialized method of sputum processing designed to facilitate multicentre studies assessing the effect of therapies targeting IL-1β and other key inflammatory mediators, such as neutrophil elastase (NE), in CF.</p

    Attitudes towards vaccination for coronavirus disease 2019 in patients with severe alpha-1 antitrypsin deficiency

    No full text
    Patients with severe alpha-1 antitrypsin deficiency (AATD) are at increased risk for the development of chronic obstructive pulmonary disease (COPD), particularly if they smoke. This, coupled with their predilection for dysregulated inflammation and autoimmunity, makes affected individuals priority candidates for vaccination against coronavirus disease 2019 (COVID-19). To promote vaccine uptake effectively, an understanding of the factors motivating people to proceed with vaccination is essential. The attitudes of patients with AATD towards COVID-19 vaccination have yet to be described. We prospectively studied 170 Pi*ZZ genotype AATD patients, 150 patients with nonhereditary (Pi*MM genotype) COPD and 140 Pi*MM genotype individuals without lung disease receiving first-dose vaccination with ChAdOx1 nCoV-19 (AstraZeneca). Patient attitudes towards vaccination and motivations for getting vaccinated were assessed at the time of the vaccine being offered. Following completion of the 2-dose vaccine series, Pi*ZZ patients were then re-assessed regarding their attitudes towards booster vaccination. The most common primary motivation for accepting vaccination in Pi*ZZ participants ≥50 years old was a fear of illness or death from COVID-19. In contrast, Pi*ZZ patients <50 years most often cited a desire to socialize. The motivation pattern of younger Pi*ZZ AATD patients was similar to that of non-deficient individuals of comparable age, whereas older Pi*ZZ individuals were more closely aligned with Pi*MM COPD and differed from age-matched controls without lung disease. When considering booster vaccination, Pi*ZZ patients were increasingly motivated by a desire to reacquire social freedoms. A desire to reduce the risk of transmission was not a prominent consideration in any of the groups studied. The most commonly cited reason for booster hesitancy was a lack of incentive, given that no additional social freedoms were available to triple-vaccinated individuals compared to those who were double-vaccinated at the time. Taken together, these data may inform policymakers attempting to promote vaccine uptake among patients with AATD

    Intracellular Secretory Leukoprotease Inhibitor Modulates Inositol 1,4,5-Triphosphate Generation and Exerts an Anti-Inflammatory Effect on Neutrophils of Individuals with Cystic Fibrosis and Chronic Obstructive Pulmonary Disease

    Get PDF
    Secretory leukoprotease inhibitor (SLPI) is an anti-inflammatory protein present in respiratory secretions. Whilst epithelial cell SLPI is extensively studied, neutrophil associated SLPI is poorly characterised. Neutrophil function including chemotaxis and degranulation of proteolytic enzymes involves changes in cytosolic calcium (Ca2+) levels which is mediated by production of inositol 1,4,5-triphosphate (IP3) in response to G-protein-coupled receptor (GPCR) stimuli. The aim of this study was to investigate the intracellular function of SLPI and the mechanism-based modulation of neutrophil function by this antiprotease. Neutrophils were isolated from healthy controls (n=10), individuals with cystic fibrosis (CF) (n=5) or chronic obstructive pulmonary disease (COPD) (n=5). Recombinant human SLPI significantly inhibited fMet-Leu-Phe (fMLP) and interleukin(IL)-8 induced neutrophil chemotaxis (P<0.05) and decreased degranulation of matrix metalloprotease-9 (MMP-9), hCAP-18, and myeloperoxidase (MPO) (P<0.05). The mechanism of inhibition involved modulation of cytosolic IP3 production and downstream Ca2+ flux. The described attenuation of Ca2+ flux was overcome by inclusion of exogenous IP3 in electropermeabilized cells. Inhibition of IP3 generation and Ca2+ flux by SLPI may represent a novel anti-inflammatory mechanism, thus strengthening the attractiveness of SLPI as a potential therapeutic molecule in inflammatory airway disease associated with excessive neutrophil influx including CF, non-CF bronchiectasis, and COPD
    corecore