2,097 research outputs found

    Ultraviolet absorption: Experiment MA-059

    Get PDF
    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed

    Nitrous oxide in fresh water systems: An estimate for the yield of atmospheric N2O associated with disposal of human waste

    Get PDF
    The N2O content of waters in the Potomac and Merrimack Rivers was measured on a number of occasions over the period April to July 1977. The concentrations of dissolved N2O exceeded those which would apply in equilibrium with air by factors ranging from about 46 in the Potomac to 1.2 in the Merrimack. Highest concentrations of dissolved N2O were associated with sewage discharges from the vicinity of Washington, D. C., and analysis indicates a relatively high yield, 1.3 to 11%, for prompt conversion of waste nitrogen to N2O. Measurements of dissolved N2O in fresh water ponds near Boston demonstrated that aquatic systems provide both strong sources and sinks for atmospheric N2O

    The Effects of Phase Separation in the Cuprate Superconductors

    Full text link
    Phase separation has been observed by several different experiments and it is believed to be closely related with the physics of cuprates but its exactly role is not yet well known. We propose that the onset of pseudogap phenomenon or the upper pseudogap temperature T∗T^* has its origin in a spontaneous phase separation transition at the temperature Tps=T∗T_{ps}=T^*. In order to perform quantitative calculations, we use a Cahn-Hilliard (CH) differential equation originally proposed to the studies of alloys and on a spinodal decomposition mechanism. Solving numerically the CH equation it is possible to follow the time evolution of a coarse-grained order parameter which satisfies a Ginzburg-Landau free-energy functional commonly used to model superconductors. In this approach, we follow the process of charge segregation into two main equilibrium hole density branches and the energy gap normally attributed to the upper pseudogap arises as the free-energy potential barrier between these two equilibrium densities below TpsT_{ps}. This simulation provides quantitative results %on the hole doping and temperature %dependence of the degree of the charge inhomogeneity in agreement with %some experiments and the simulations reproduce the observed stripe and granular pattern of segregation. Furthermore, with a Bogoliubov-deGennes (BdG) local superconducting critical temperature calculation for the lower pseudogap or the onset of local superconductivity, it yields novel interpretation of several non-conventional measurements on cuprates.Comment: Published versio

    Evolution of the electronic excitation spectrum with strongly diminishing hole-density in superconducting Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta}

    Full text link
    A complete knowledge of its excitation spectrum could greatly benefit efforts to understand the unusual form of superconductivity occurring in the lightly hole-doped copper-oxides. Here we use tunnelling spectroscopy to measure the T\to 0 spectrum of electronic excitations N(E) over a wide range of hole-density p in superconducting Bi_{2}Sr_{2}CaCu_{2}O_{8+/delta}. We introduce a parameterization for N(E) based upon an anisotropic energy-gap /Delta (\vec k)=/Delta_{1}(Cos(k_{x})-Cos(k_{y}))/2 plus an effective scattering rate which varies linearly with energy /Gamma_{2}(E) . We demonstrate that this form of N(E) allows successful fitting of differential tunnelling conductance spectra throughout much of the Bi_{2}Sr_{2}CaCu_{2}O_{8+/delta} phase diagram. The resulting average /Delta_{1} values rise with falling p along the familiar trajectory of excitations to the 'pseudogap' energy, while the key scattering rate /Gamma_{2}^{*}=/Gamma_{2}(E=/Delta_{1}) increases from below ~1meV to a value approaching 25meV as the system is underdoped from p~16% to p<10%. Thus, a single, particle-hole symmetric, anisotropic energy-gap, in combination with a strongly energy and doping dependent effective scattering rate, can describe the spectra without recourse to another ordered state. Nevertheless we also observe two distinct and diverging energy scales in the system: the energy-gap maximum /Delta_{1} and a lower energy scale /Delta_{0} separating the spatially homogeneous and heterogeneous electronic structures.Comment: High resolution version available at: http://people.ccmr.cornell.edu/~jcdavis/files/Alldredge-condmat08010087-highres.pd

    Local edge modes in doped cuprates with checkerboard polaronic heterogeneity

    Full text link
    We study a periodic polaronic system, which exhibits a nanoscale superlattice structure, as a model for hole-doped cuprates with checkerboard-like heterogeneity, as has been observed recently by scanning tunneling microscopy (STM). Within this model, the electronic and phononic excitations are investigated by applying an unrestricted Hartree-Fock and a random phase approximation (RPA) to a multiband Peierls-Hubbard Hamiltonian in two dimensions

    Space Station Engineering Design Issues

    Get PDF
    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design

    A momentum-dependent perspective on quasiparticle interference in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta}

    Full text link
    Angle Resolved Photoemission Spectroscopy (ARPES) probes the momentum-space electronic structure of materials, and provides invaluable information about the high-temperature superconducting cuprates. Likewise, the cuprate real-space, inhomogeneous electronic structure is elucidated by Scanning Tunneling Spectroscopy (STS). Recently, STS has exploited quasiparticle interference (QPI) - wave-like electrons scattering off impurities to produce periodic interference patterns - to infer properties of the QP in momentum-space. Surprisingly, some interference peaks in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} (Bi-2212) are absent beyond the antiferromagnetic (AF) zone boundary, implying the dominance of particular scattering process. Here, we show that ARPES sees no evidence of quasiparticle (QP) extinction: QP-like peaks are measured everywhere on the Fermi surface, evolving smoothly across the AF zone boundary. This apparent contradiction stems from different natures of single-particle (ARPES) and two-particle (STS) processes underlying these probes. Using a simple model, we demonstrate extinction of QPI without implying the loss of QP beyond the AF zone boundary
    • …
    corecore