9 research outputs found

    Nebulin regulates the assembly and lengths of the thin filaments in striated muscle

    Get PDF
    In many tissues, actin monomers polymerize into actin (thin) filaments of precise lengths. Although the exact mechanisms involved remain unresolved, it is proposed that “molecular rulers” dictate the lengths of the actin filaments. The giant nebulin molecule is a prime candidate for specifying thin filament lengths in striated muscle, but this idea has never been proven. To test this hypothesis, we used RNA interference technology in rat cardiac myocytes. Live cell imaging and triple staining revealed a dramatic elongation of the preexisting thin filaments from their pointed ends upon nebulin knockdown, demonstrating its role in length maintenance; the barbed ends were unaffected. When the thin filaments were depolymerized with latrunculin B, myocytes with decreased nebulin levels reassembled them to unrestricted lengths, demonstrating its importance in length specification. Finally, knockdown of nebulin in skeletal myotubes revealed its involvement in myofibrillogenesis. These data are consistent with nebulin functioning as a thin filament ruler and provide insight into mechanisms dictating macromolecular assembly

    The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis

    No full text
    The MAML (mastermind-like) proteins are a family of three cotranscriptional regulators that are essential for Notch signaling, a pathway critical for cell fate determination. Though the functions of MAML proteins in normal development remain unresolved, their distinct tissue distributions and differential activities in cooperating with various Notch receptors suggest that they have unique roles. Here we show that mice with a targeted disruption of the Maml1 gene have severe muscular dystrophy. In vitro, Maml1-null embryonic fibroblasts failed to undergo MyoD-induced myogenic differentiation, further suggesting that Maml1 is required for muscle development. Interestingly, overexpression of MAML1 in C2C12 cells dramatically enhanced myotube formation and increased the expression of muscle-specific genes, while RNA interference (RNAi)-mediated MAML1 knockdown abrogated differentiation. Moreover, we determined that MAML1 interacts with MEF2C (myocyte enhancer factor 2C), functioning as its potent cotranscriptional regulator. Surprisingly, however, MAML1’s promyogenic effects were completely blocked upon activation of Notch signaling, which was associated with recruitment of MAML1 away from MEF2C to the Notch transcriptional complex. Our study thus reveals novel and nonredundant functions for MAML1: It acts as a coactivator for MEF2C transcription and is essential for proper muscle development. Mechanistically, MAML1 appears to mediate cross-talk between Notch and MEF2 to influence myogenic differentiation
    corecore