22 research outputs found

    Design, Development and Testing of the GMI Reflector Deployment Assembly

    Get PDF
    The GMI Reflector Deployment Assembly (RDA) is an articulating structure that accurately positions and supports the main reflector of the Global Microwave Imager (GMI) throughout the 3 year mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydrometeorological predictions through more accurate and frequent precipitation measurements1. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard to design, build, and test the GMI instrument. The RDA was designed and manufactured by ATK Aerospace Systems Group to meet a number of challenging packaging and performance requirements. ATK developed a flight-like engineering development unit (EDU) and two flight mechanisms that have been delivered to BATC. This paper will focus on driving GMI instrument system requirements, the RDA design, development, and test activities performed to demonstrate that requirements have been met

    Point-Focus Concentration Compact Telescoping Array: EESP Option 1 Phase Final Report for Public Release

    Get PDF
    Orbital ATK, in partnership with Mark ONeill LLC (MOLLC) and SolAero Technologies Corp., has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 1/25th the size of the lens. CTA stands for Compact Telescoping Array1, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018. The NASA Game Changing Development Extreme Environment Solar Power (EESP) Option 1 Phase study has enabled Orbital ATK to generate and refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL ~5. Key performance metrics currently projected are as follows: Scalability from 300 kW per wing (AM0); Specific Power > 250 W/kg (BoL, AM0); Stowage Efficiency > 60 kW/m3; 5:1 margin on pointing tolerance vs. capability; >50% launched cost savings; Wide range of operability between Venus and Saturn by active and/or passive thermal management

    Multi-Disease Data Management System Platform for Vector-Borne Diseases

    Get PDF
    Background Emerging information technologies present new opportunities to reduce the burden of malaria, dengue and other infectious diseases. For example, use of a data management system software package can help disease control programs to better manage and analyze their data, and thus enhances their ability to carry out continuous surveillance, monitor interventions and evaluate control program performance. Methods and Findings We describe a novel multi-disease data management system platform (hereinafter referred to as the system) with current capacity for dengue and malaria that supports data entry, storage and query. It also allows for production of maps and both standardized and customized reports. The system is comprised exclusively of software components that can be distributed without the user incurring licensing costs. It was designed to maximize the ability of the user to adapt the system to local conditions without involvement of software developers. Key points of system adaptability include 1) customizable functionality content by disease, 2) configurable roles and permissions, 3) customizable user interfaces and display labels and 4) configurable information trees including a geographical entity tree and a term tree. The system includes significant portions of functionality that is entirely or in large part re-used across diseases, which provides an economy of scope as new diseases downstream are added to the system at decreased cost. Conclusions We have developed a system with great potential for aiding disease control programs in their task to reduce the burden of dengue and malaria, including the implementation of integrated vector management programs. Next steps include evaluations of operational implementations of the current system with capacity for dengue and malaria, and the inclusion in the system platform of other important vector-borne diseases

    Point-Focus Concentration Compact Telescoping Array: Extreme Environments Solar Power Base Phase Final Report

    Get PDF
    Orbital ATK, in partnership with Mark ONeill LLC (MOLLC), has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 125th the size of the lens. CTA stands for Compact Telescoping Array, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018.The NASA Game Changing Development Extreme Environment Solar Power (EESP) Base Phase study has enabled Orbital ATK to refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL 4. Key performance metrics currently projected are as follows: Scalability from 5 kW to 300 kW per wing (AM0); Specific Power 500 Wkg (AM0); Stowage Efficiency 100 kWm3; 5:1 margin on pointing tolerance vs. capability; 50 launched cost savings; Wide range of operability between Venus and Saturn by active andor passive thermal management

    L'apprentissage en profondeur: s'ouvrir au monde, changer le monde

    No full text
    Comprend des références bibliographiques (pages 219-223) et un inde

    Scalable Closed-Form Modeling of Slender Lattice Columns Under Combined Loading

    No full text

    Error correction code-based embedding in adaptive rate communication system

    Get PDF
    The invention relates to concealing information within error correction codes of adaptive rate wireless communication systems. In some embodiments, the invention includes selecting a modulation and coding scheme with a more robust error correction capacity than needed by current channel conditions; encoding a hidden message with a pre-shared key that is known by a covert transmitter and a covert receiver, and after a standard message is encoded by a transmitting station of the wireless communication systems, replacing codeword parity bits of codewords in the encoded standard message with the encoded hidden message at desigâ‚™ated locations. Before a receiving station of the wireless communication systems decodes the encoded standard message, a covert receiver extracts the embedded hidden message from the encoded standard message, replaces bit values of the embedded hidden message with zero at the designated locations, and decodes the extracted hidden message with the pre-shared key

    Twenty-four hour emergency pharmaceutical services

    No full text

    Flow-specific medium access for networked satellite system

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1109/JSYST.2011.2161796Prior work in modeling the satellite-based detection and tracking components of the ballistic missile defense system as a large-scale, wireless sensor network relies on a medium access scheme that can accommodate the large propagation delays encountered in these networked satellite systems. While existing satellite-based systems typically employ a form of time division multiple access, recent efforts have begun to explore contention- based approaches. In this work, we quantify the effect of the large propagation delays on both contention-based and contention-free solutions and propose a flow-specific medium access solution that provides improved delay performance by dynamically adapting the networked satellite medium access scheme to changes in both individual flow and link characteristics. A comparison with CSMA and TDMA is provided through simulation results using a version of the traffic-adaptive cooperative wireless sensor medium access control protocol that has been modified to accommodate large propagation delays
    corecore