169 research outputs found

    Eliashberg's proof of Cerf's theorem

    Full text link
    Following a line of reasoning suggested by Eliashberg, we prove Cerf's theorem that any diffeomorphism of the 3-sphere extends over the 4-ball. To this end we develop a moduli-theoretic version of Eliashberg's filling-with-holomorphic-discs method.Comment: 32 page

    New obstructions to symplectic embeddings

    Full text link
    In this paper we establish new restrictions on symplectic embeddings of certain convex domains into symplectic vector spaces. These restrictions are stronger than those implied by the Ekeland-Hofer capacities. By refining an embedding technique due to Guth, we also show that they are sharp.Comment: 80 pages, 3 figures, v2: improved exposition and minor corrections, v3: Final version, expanded and improved exposition and minor corrections. The final publication is available at link.springer.co

    Decomposition of symmetric tensor fields in the presence of a flat contact projective structure

    Get PDF
    Let MM be an odd-dimensional Euclidean space endowed with a contact 1-form α\alpha. We investigate the space of symmetric contravariant tensor fields on MM as a module over the Lie algebra of contact vector fields, i.e. over the Lie subalgebra made up by those vector fields that preserve the contact structure. If we consider symmetric tensor fields with coefficients in tensor densities, the vertical cotangent lift of contact form α\alpha is a contact invariant operator. We also extend the classical contact Hamiltonian to the space of symmetric density valued tensor fields. This generalized Hamiltonian operator on the symbol space is invariant with respect to the action of the projective contact algebra sp(2n+2)sp(2n+2). The preceding invariant operators lead to a decomposition of the symbol space (expect for some critical density weights), which generalizes a splitting proposed by V. Ovsienko

    An exact sequence for contact- and symplectic homology

    Full text link
    A symplectic manifold WW with contact type boundary M=∂WM = \partial W induces a linearization of the contact homology of MM with corresponding linearized contact homology HC(M)HC(M). We establish a Gysin-type exact sequence in which the symplectic homology SH(W)SH(W) of WW maps to HC(M)HC(M), which in turn maps to HC(M)HC(M), by a map of degree -2, which then maps to SH(W)SH(W). Furthermore, we give a description of the degree -2 map in terms of rational holomorphic curves with constrained asymptotic markers, in the symplectization of MM.Comment: Final version. Changes for v2: Proof of main theorem supplemented with detailed discussion of continuation maps. Description of degree -2 map rewritten with emphasis on asymptotic markers. Sec. 5.2 rewritten with emphasis on 0-dim. moduli spaces. Transversality discussion reorganized for clarity (now Remark 9). Various other minor modification

    Weak and strong fillability of higher dimensional contact manifolds

    Full text link
    For contact manifolds in dimension three, the notions of weak and strong symplectic fillability and tightness are all known to be inequivalent. We extend these facts to higher dimensions: in particular, we define a natural generalization of weak fillings and prove that it is indeed weaker (at least in dimension five),while also being obstructed by all known manifestations of "overtwistedness". We also find the first examples of contact manifolds in all dimensions that are not symplectically fillable but also cannot be called overtwisted in any reasonable sense. These depend on a higher-dimensional analogue of Giroux torsion, which we define via the existence in all dimensions of exact symplectic manifolds with disconnected contact boundary.Comment: 68 pages, 5 figures. v2: Some attributions clarified, and other minor edits. v3: exposition improved using referee's comments. Published by Invent. Mat

    Exotic smooth structures and symplectic forms on closed manifolds

    Full text link
    We give a short proof of the (known) result that there are no Kaehler structures on exotic tori. This yields a negative solution to a problem posed by Benson and Gordon. W discuss the symplectic version of the problem and analyze results which yield an evidence for the conjecture that there are no symplectic structures on exotic tori.Comment: AMSLaTeX, 16 pages, a new version. A survey of the symplectic version of the problem is adde

    Relative commutants of strongly self-absorbing C*-algebras

    Get PDF
    The relative commutant Aâ€Č∩AUA'\cap A^{\mathcal{U}} of a strongly self-absorbing algebra AA is indistinguishable from its ultrapower AUA^{\mathcal{U}}. This applies both to the case when AA is the hyperfinite II1_1 factor and to the case when it is a strongly self-absorbing C*-algebra. In the latter case we prove analogous results for ℓ∞(A)/c0(A)\ell_\infty(A)/c_0(A) and reduced powers corresponding to other filters on N\bf N. Examples of algebras with approximately inner flip and approximately inner half-flip are provided, showing the optimality of our results. We also prove that strongly self-absorbing algebras are smoothly classifiable, unlike the algebras with approximately inner half-flip.Comment: Some minor correction

    Metastable chaos in the ammonia ring laser

    Get PDF
    We report experimental studies of metastable chaos in the far-infrared ammonia ring: laser. When the laser pump power is switched from above chaos threshold to slightly below, chaotic intensity pulsations continue for a varying time afterward before decaying to either periodic or cw emission. The behavior is in good qualitative agreement with that predicted by the Lorenz equations, previously used to describe this laser. The statistical distribution of the duration of the chaotic transient is measured and shown to be in excellent agreement with the Lorenz equations in showing a modified exponential distribution. We also give a brief numerical analysis and graphical visualization of the Lorenz equations in phase space illustrating the boundary between the metastable chaotic and the stable fixed point basins of attraction. This provides an intuitive understanding of the metastable dynamics of the Lorenz equations and the experimental system

    Gauging and symplectic blowing up in nonlinear sigma-models: I. point singularities

    Full text link
    In this paper a two dimensional non-linear sigma model with a general symplectic manifold with isometry as target space is used to study symplectic blowing up of a point singularity on the zero level set of the moment map associated with a quasi-free Hamiltonian action. We discuss in general the relation between symplectic reduction and gauging of the symplectic isometries of the sigma model action. In the case of singular reduction, gauging has the same effect as blowing up the singular point by a small amount. Using the exponential mapping of the underlying metric, we are able to construct symplectic diffeomorphisms needed to glue the blow-up to the global reduced space which is regular, thus providing a transition from one symplectic sigma model to another one free of singularities.Comment: 32 pages, LaTex, THEP 93/24 (corrected and expanded(about 5 pages) version

    On some aspects of the geometry of differential equations in physics

    Full text link
    In this review paper, we consider three kinds of systems of differential equations, which are relevant in physics, control theory and other applications in engineering and applied mathematics; namely: Hamilton equations, singular differential equations, and partial differential equations in field theories. The geometric structures underlying these systems are presented and commented. The main results concerning these structures are stated and discussed, as well as their influence on the study of the differential equations with which they are related. Furthermore, research to be developed in these areas is also commented.Comment: 21 page
    • 

    corecore