6,323 research outputs found

    Dissipation and enstrophy statistics in turbulence : are the simulations and mathematics converging?

    Get PDF
    Since the advent of cluster computing over 10 years ago there has been a steady output of new and better direct numerical simulation of homogeneous, isotropic turbulence with spectra and lower-order statistics converging to experiments and many phenomenological models. The next step is to directly compare these simulations to new models and new mathematics, employing the simulated data sets in novel ways, especially when experimental results do not exist or are poorly converged. For example, many of the higher-order moments predicted by the models converge slowly in experiments. The solution with a simulation is to do what an experiment cannot. The calculation and analysis of Yeung, Donzis & Sreenivasan (J. Fluid Mech., this issue, vol. 700, 2012, pp. 5–15) represents the vanguard of new simulations and new numerical analysis that will fill this gap. Where individual higher-order moments of the vorticity squared (the enstrophy) and kinetic energy dissipation might be converging slowly, they have focused upon ratios between different moments that have better convergence properties. This allows them to more fully explore the statistical distributions that eventually must be modelled. This approach is consistent with recent mathematics that focuses upon temporal intermittency rather than spatial intermittency. The principle is that when the flow is nearly singular, during ‘bad’ phases, when global properties can go up and down by many orders of magnitude, if appropriate ratios are taken, convergence rates should improve. Furthermore, in future analysis it might be possible to use these ratios to gain new insights into the intermittency and regularity properties of the underlying equations

    Bounds for Euler from vorticity moments and line divergence

    Get PDF
    The inviscid growth of a range of vorticity moments is compared using Euler calculations of anti-parallel vortices with a new initial condition. The primary goal is to understand the role of nonlinearity in the generation of a new hierarchy of rescaled vorticity moments in Navier–Stokes calculations where the rescaled moments obey Dm ≄ Dm+1, the reverse of the usual Ωm+1 ≄ Ωm Hölder ordering of the original moments. Two temporal phases have been identified for the Euler calculations. In the first phase the 1 < m < ∞ vorticity moments are ordered in a manner consistent with the new Navier–Stokes hierarchy and grow in a manner that skirts the lower edge of possible singular growth with D2 m → ïżœ sup ӏωӏ ~ Am(Tc-t)-1 where the Am are nearly independent of m. In the second phase, the new Dm ordering breaks down as the Ωm converge towards the same super-exponential growth for all m. The transition is identified using new inequalities for the upper bounds for the -dD-2m/dt that are based solely upon the ratios Dm+1/Dm, and the convergent super-exponential growth is shown by plotting log(d log Ωm/dt). Three-dimensional graphics show significant divergence of the vortex lines during the second phase, which could be what inhibits the initial power-law growth

    Dynamic confidence during simulated clinical tasks

    Get PDF
    Objective: Doctors' confidence in their actions is important for clinical performance. While static confidence has been widely studied, no study has examined how confidence changes dynamically during clinical tasks. Method: The confidence of novice (n = 10) and experienced (n = 10) trainee anaesthetists was measured during two simulated anaesthetic crises, bradycardia (easy task) and failure to ventilate (difficult task). Results: As expected, confidence was high in the novice and experienced groups in the easy task. What was surprising, however, was that confidence during the difficult task decreased for both groups, despite appropriate performance. Conclusions: Given that confidence affects performance, it is alarming that doctors who may be acting unsupervised should lose dynamic confidence so quickly. Training is needed to ensure that confidence does not decrease inappropriately during a correctly performed procedure. Whether time on task interacts with incorrect performance to produce further deficits in confidence should now be investigated

    MHD mode conversion in a stratified atmosphere

    Full text link
    Mode conversion in the region where the sound and Alfven speeds are equal is a complex process, which has been studied both analytically and numerically, and has been seen in observations. In order to further the understanding of this process we set up a simple, one-dimensional model, and examine wave propagation through this system using a combination of analytical and numerical techniques. Simulations are carried out in a gravitationally stratified atmosphere with a uniform, vertical magnetic field for both isothermal and non-isothermal cases. For the non-isothermal case a temperature profile is chosen to mimic the steep temperature gradient encountered at the transition region. In all simulations, a slow wave is driven on the upper boundary, thus propagating down from low-beta to high-beta plasma across the mode-conversion region. In addition, a detailed analytical study is carried out where we predict the amplitude and phase of the transmitted and converted components of the incident wave as it passes through the mode-conversion region. A comparison of these analytical predictions with the numerical results shows good agreement, giving us confidence in both techniques. This knowledge may be used to help determine wave types observed and give insight into which modes may be involved in coronal heating.Comment: 7 pages, 5 figure

    Measuring Symbol and Icon Characteristics: Norms for Concreteness, Complexity, Meaningfulness, Familiarity, and Semantic Distance for 239 Symbols

    Get PDF
    This paper provides rating norms for a set of symbols and icons selected from a wide variety of sources. These ratings enable the effects of symbol characteristics on user performance to be systematically investigated. The symbol characteristics that have been quantified are considered to be of central relevance to symbol usability research and include concreteness, complexity, meaningfulness, familiarity, and semantic distance. The interrelationships between each of these dimensions is examined and the importance of using normative ratings for experimental research is discussed

    Eyelid development, fusion and subsequent reopening in the mouse

    Get PDF
    The process of eyelid development was studied in the mouse. The critical events occur between about 15.5 d postcoitum (p.c.) and 12 d after birth, and were studied by conventional histology and by scanning electron microscopy. At about 15.5 d p.c. the cornea of the eye is clearly visible with the primitive eyelids being represented by protruding ridges of epithelium at its periphery. Over the next 24 h, eyelid development proceeds to the stage when the cornea is completely covered by the fused eyelids. Periderm cells stream in to fill the gap between the developing eyelids. Their proliferative activity is such that they produce a cellular excrescence on the outer surface of the line of fusion of the eyelids. This excrescence had almost disappeared by about 17.5 d p.c. Keratinisation is first evident at this stage on the surface of the eyelids and passes continuously from one eyelid to the other. Evidence of epidermal differentiation is more clearly seen in the newborn, where a distinctive stratum granulosum now occupies about one third of its entire thickness. Within the subjacent dermis, hair follicles are differentiating. By about 5 d after birth, a thick layer of keratin extends without interruption across the junctional region. While a noticeable surface indentation overlies the latter, a similar depression is only seen on the conjunctival surface by about 10 d after birth. Keratinisation is also observed to extend in from the epidermal surface to involve the entire region between the 2 eyelids at about this time.(ABSTRACT TRUNCATED AT 250 WORDS

    MHD Mode Conversion around a 2D Magnetic Null Point

    Get PDF
    Mode conversion occurs when a wave passes through a region where the sound and Alfven speeds are equal. At this point there is a resonance, which allows some of the incident wave to be converted into a different mode. We study this phenomenon in the vicinity of a two-dimensional, coronal null point. As a wave approaches the null it passes from low- to high-beta plasma, allowing conversion to take place. We simulate this numerically by sending in a slow magnetoacoustic wave from the upper boundary; as this passes through the conversion layer a fast wave can clearly be seen propagating ahead. Numerical simulations combined with an analytical WKB investigation allow us to determine and track both the incident and converted waves throughout the domain.Comment: 4 pages, 2 figure

    On Ptolemaic metric simplicial complexes

    Get PDF
    We show that under certain mild conditions, a metric simplicial complex which satisfies the Ptolemy inequality is a CAT(0) space. Ptolemy's inequality is closely related to inversions of metric spaces. For a large class of metric simplicial complexes, we characterize those which are isometric to Euclidean space in terms of metric inversions.Comment: 13 page

    An Evaluation of the Economic, Environmental and Social Impacts of NSW DPI Investments in IPM Research in Lettuce

    Get PDF
    Research into IPM technologies has been conducted by NSW DPI for over 20 years. Evaluating the returns from investment in specific research and development projects is an important component of the NSW DPI science and research program. An economic evaluation has been conducted of IPM in managing invertebrate pests in lettuce in NSW. We found that there has been widespread adoption of IPM practices amongst NSW lettuce growers leading to a flow of economic benefits to the lettuce industry and the community. Important environmental and human health benefits were also identified. A benefit-cost ratio of 2 was calculated for the return to NSW DPI investment in lettuce IPM research which while satisfactory, is lower than returns calculated for other agricultural R&D. It does not include ‘spillover’ benefits to other States nor have human health or environmental benefits been valued.research, benefit-cost, evaluation, IPM (Integrated Pest Management), lettuce, Crop Production/Industries, Environmental Economics and Policy, Farm Management, Production Economics, Q160,
    • 

    corecore