3,427 research outputs found

    Signal acquisition via polarization modulation in single photon sources

    Full text link
    A simple model system is introduced for demonstrating how a single photon source might be used to transduce classical analog information. The theoretical scheme results in measurements of analog source samples that are (i) quantized in the sense of analog-to-digital conversion and (ii) corrupted by random noise that is solely due to the quantum uncertainty in detecting the polarization state of each photon. This noise is unavoidable if more than one bit per sample is to be transmitted, and we show how it may be exploited in a manner inspired by suprathreshold stochastic resonance. The system is analyzed information theoretically, as it can be modeled as a noisy optical communication channel, although unlike classical Poisson channels, the detector's photon statistics are binomial. Previous results on binomial channels are adapted to demonstrate numerically that the classical information capacity, and thus the accuracy of the transduction, increases logarithmically with the square root of the number of photons, N. Although the capacity is shown to be reduced when an additional detector nonideality is present, the logarithmic increase with N remains.Comment: 7 pages, 2 figures, accepted by Physical Review E. This version adds a referenc

    Nuclear energy density optimization: Shell structure

    Full text link
    Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.Comment: 18 pages, 13 figures, 12 tables; resubmitted for publication to Phys. Rev. C after second review by refere

    Time-separated entangled light pulses from a single-atom emitter

    Full text link
    The controlled interaction between a single, trapped, laser-driven atom and the mode of a high-finesse optical cavity allows for the generation of temporally separated, entangled light pulses. Entanglement between the photon-number fluctuations of the pulses is created and mediated via the atomic center-of-mass motion, which is interfaced with light through the mechanical effect of atom-photon interaction. By means of a quantum noise analysis we determine the correlation matrix which characterizes the entanglement, as a function of the system parameters. The scheme is feasible in experimentally accessible parameter regimes. It may be easily extended to the generation of entangled pulses at different frequencies, even at vastly different wavelengths.Comment: 17 pages, 5 figures. Modified version, to appear in the New Journal of Physic

    Establishing the values for patient engagement (PE) in health-related quality of life (HRQoL) research: an international, multiple-stakeholder perspective

    Get PDF
    PurposeActive patient engagement is increasingly viewed as essential to ensuring that patient-driven perspectives are considered throughout the research process. However, guidance for patient engagement (PE) in HRQoL research does not exist, the evidence-base for practice is limited, and we know relatively little about underpinning values that can impact on PE practice. This is the first study to explore the values that should underpin PE in contemporary HRQoL research to help inform future good practice guidance. MethodsA modified ‘World Café’ was hosted as a collaborative activity between patient partners, clinicians and researchers: self-nominated conference delegates participated in group discussions to explore values associated with the conduct and consequences of PE. Values were captured via post-it notes and by nominated note-takers. Data were thematically analysed: emergent themes were coded and agreement checked. Association between emergent themes, values and the Public Involvement Impact Assessment Framework were explored. ResultsEighty participants, including 12 patient partners, participated in the 90-min event. Three core values were defined: (1) building relationships; (2) improving research quality and impact; and (3) developing best practice. Participants valued the importance of building genuine, collaborative and deliberative relationships—underpinned by honesty, respect, co-learning and equity—and the impact of effective PE on research quality and relevance. Conclusions An explicit statement of values seeks to align all stakeholders on the purpose, practice and credibility of PE activities. An innovative, flexible and transparent research environment was valued as essential to developing a trustworthy evidence-base with which to underpin future guidance for good PE practice.Peer reviewe

    Increased luminescence efficiency by synergistic exploitation of lipo/hydrophilic co-solvency and supramolecular design

    Get PDF
    We use steady-state and time-resolved photoluminescence (PL) spectroscopy to investigate the luminescent properties of a sulfonated poly(diphenylenevinylene) lithium salt (PDV.Li) in water/propanol solutions at different concentrations, with a view to assessing its aggregation behavior. In particular, we compare results from uninsulated PDV.Li and cyclodextrin-threaded PDV.Li polyrotaxane (PDV.Li⊂β-CD). We find that addition of 1-propanol (≥20 weight%) leads to a significant blue-shift (of ∼0.20 eV) of the PL spectra, that we assign to suppressed interchain aggregation in PDV.Li solutions, with a concomitant fourfold increase in the fluorescence quantum efficiency (i.e. from 14 to 60%). Surprisingly, a moderate concentration of propanol increases further the luminescence efficiency even for PDV.Li⊂β-CD, whose supramolecular encapsulation already provides a shield against aggregation. Indeed, addition of propanol reduces the solvent polarity, and therefore helps solubilizing these materials that are still largely aromatic in nature. Interestingly, however, both uninsulated PDV.Li and polyrotaxane solutions exhibit signs of aggregation at high propanol fraction (>70%) with a distinctively weaker coupling than that of interchain states in PDV.Li at high water concentration and in pure water in particular. While we ascribe such behavior to a poor solvation of the polar moieties, we also report a different strength of aggregation for PDV.Li and PDV.Li⊂β-CD that can be attributed to the presence of the cyclodextrin rings. In PDV.Li⊂β-CD hydrogen bonding between the cyclodextrin rings may lead to closer packing between the polymer chains. We therefore suggest that a content of propanol between 30 and 70% provides a good balance of hydrophobic and hydrophilic interactions both for PDV.Li and PDV.Li⊂β-CD

    Measuring readiness-to-hand through differences in attention to the task vs. attention to the tool

    Get PDF
    New interaction techniques, like multi-touch, tangible inter-action, and mid-air gestures often promise to be more intuitive and natural; however, there is little work on how to measure these constructs. One way is to leverage the phenomenon of tool embodiment—when a tool becomes an extension of one’s body, attention shifts to the task at hand, rather than the tool itself. In this work, we constructed a framework to measure tool embodiment by incorporating philosophical and psychological concepts. We applied this framework to design and conduct a study that uses attention to measure readiness-to-hand with both a physical tool and a virtual tool. We introduce a novel task where participants use a tool to rotate an object, while simultaneously responding to visual stimuli both near their hand and near the task. Our results showed that participants paid more attention to the task than to both kinds of tool. We also discuss how this evaluation framework can be used to investigate whether novel interaction techniques allow for this kind of tool embodiment.Postprin
    corecore