3 research outputs found

    Extensional viscosity of copper nanowire suspensions in an aqueous polymer solution

    Full text link
    Suspensions of copper nanowires are emerging as new electronic inks for next-generation flexible electronics. Using a novel surface acoustic wave driven extensional flow technique we are able to perform currently lacking analysis of these suspensions and their complex buffer. We observe extensional viscosities from 3 mPa⋅\cdots (1 mPa⋅\cdots shear viscosity) to 37.2 Pa⋅\cdots via changes in the suspension concentration, thus capturing low viscosities that have been historically very challenging to measure. These changes equate to an increase in the relative extensional viscosity of nearly 12,200 times at a volume fraction of just 0.027. We also find that interactions between the wires and the necessary polymer additive affect the rheology strongly. Polymer-induced elasticity shows a reduction as the buffer relaxation time falls from 819 to 59 μ\mus above a critical particle concentration. The results and technique presented here should aid in the future formulation of these promising nanowire suspensions and their efficient application as inks and coatings.Comment: 7 pages, 5 figures, under review for Soft Matter RS

    Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows

    Full text link
    Suspensions of motile cells are model systems for understanding the unique mechanical properties of living materials which often consist of ensembles of self-propelled particles. We present here a quantitative comparison of theory against experiment for the rheology of such suspensions. The influence of motility on viscosities of cell suspensions is studied using a novel acoustically-driven microfluidic capillary-breakup extensional rheometer. Motility increases the extensional viscosity of suspensions of algal pullers, but decreases it in the case of bacterial or sperm pushers. A recent model [Saintillan, Phys. Rev. E, 2010, 81:56307] for dilute active suspensions is extended to obtain predictions for higher concentrations, after independently obtaining parameters such as swimming speeds and diffusivities. We show that details of body and flagellar shape can significantly determine macroscale rheological behaviour.Comment: 12 pages, 1 appendix, 7 figures, submitted to Soft Matter - under revie
    corecore