21,257 research outputs found

    Genetic braid optimization: A heuristic approach to compute quasiparticle braids

    Get PDF
    In topologically-protected quantum computation, quantum gates can be carried out by adiabatically braiding two-dimensional quasiparticles, reminiscent of entangled world lines. Bonesteel et al. [Phys. Rev. Lett. 95, 140503 (2005)], as well as Leijnse and Flensberg [Phys. Rev. B 86, 104511 (2012)] recently provided schemes for computing quantum gates from quasiparticle braids. Mathematically, the problem of executing a gate becomes that of finding a product of the generators (matrices) in that set that approximates the gate best, up to an error. To date, efficient methods to compute these gates only strive to optimize for accuracy. We explore the possibility of using a generic approach applicable to a variety of braiding problems based on evolutionary (genetic) algorithms. The method efficiently finds optimal braids while allowing the user to optimize for the relative utilities of accuracy and/or length. Furthermore, when optimizing for error only, the method can quickly produce efficient braids.Comment: 6 pages 4 figure

    Variation of solar-selective properties of black chrome with plating time

    Get PDF
    The spectral reflectance properties of a commercially prepared black chrome over dull nickel, both plated on steel, for various plating times of the black chrome were measured. The plating current was 180 amperes per square foot. Values of absorptance integrated over the solar spectrum, and of infrared emittance integrated over black-body radiation at 250 F were obtained. It is shown that plating between one and two minutes produces the optimum combination of highest heat absorbed and lowest heat lost by radiation

    Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies

    Get PDF
    We present a study of 107 galaxies, groups, and clusters spanning ~3 orders of magnitude in mass, ~5 orders of magnitude in central galaxy star formation rate (SFR), ~4 orders of magnitude in the classical cooling rate (dM/dt) of the intracluster medium (ICM), and ~5 orders of magnitude in the central black hole accretion rate. For each system in this sample, we measure dM/dt using archival Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by combining over 330 estimates from dozens of literature sources. With these data, we estimate the efficiency with which the ICM cools and forms stars, finding e_cool = SFR/(dM/dt) = 1.4 +/- 0.4% for systems with dM/dt > 30 Msun/yr. For these systems, we measure a slope in the SFR-dM/dt relation greater than unity, suggesting that the systems with the strongest cool cores are also cooling more efficiently. We propose that this may be related to, on average, higher black hole accretion rates in the strongest cool cores, which could influence the total amount (saturating near the Eddington rate) and dominant mode (mechanical vs radiative) of feedback. For systems with dM/dt < 30 Msun/yr, we find that the SFR and dM/dt are uncorrelated, and show that this is consistent with star formation being fueled at a low (but dominant) level by recycled ISM gas in these systems. We find an intrinsic log-normal scatter in SFR at fixed dM/dt of 0.52 +/- 0.06 dex, suggesting that cooling is tightly self-regulated over very long timescales, but can vary dramatically on short timescales. There is weak evidence that this scatter may be related to the feedback mechanism, with the scatter being minimized (~0.4 dex) in systems for which the mechanical feedback power is within a factor of two of the cooling luminosity.Comment: 16 pages, 10 figures, 6 tables. Submitted to ApJ. Comments welcome

    LANNDD---A Massive Liquid Argon Detector for Proton Decay, Supernova and Solar Neutrino Studies, and a Neutrino Factory Detector

    Get PDF
    We describe a possible Liquid Argon Neutrino and Nuclear Decay Detector (LANNDD) that consists of a 70kt magnetized liquid argon tracking detector. The detector is being designed for the Carlsbad Underground Laboratory.Comment: 8 pages, 5 figures; for the Neutrino Facory Meeting at KEK-NUFACT '0

    Statistical Mechanics and Lorentz Violation

    Full text link
    The theory of statistical mechanics is studied in the presence of Lorentz-violating background fields. The analysis is performed using the Standard-Model Extension (SME) together with a Jaynesian formulation of statistical inference. Conventional laws of thermodynamics are obtained in the presence of a perturbed hamiltonian that contains the Lorentz violating terms. As an example, properties of the nonrelativistic ideal gas are calculated in detail. To lowest order in Lorentz violation, the scalar thermodynamic variables are only corrected by a rotationally invariant combination of parameters that mimics a (frame dependent) effective mass. Spin couplings can induce a temperature independent polarization in the classical gas that is not present in the conventional case. Precision measurements in the residual expectation values of the magnetic moment of Fermi gases in the limit of high temperature may provide interesting limits on these parameters.Comment: 7 pages, revte

    Optical Production of Stable Ultracold 88^{88}Sr2_2 Molecules

    Full text link
    We have produced large samples of ultracold 88^{88}Sr2_2 molecules in the electronic ground state in an optical lattice. The molecules are bound by 0.05 cm1^{-1} and are stable for several milliseconds. The fast, all-optical method of molecule creation via intercombination line photoassociation relies on a near-unity Franck-Condon factor. The detection uses a weakly bound vibrational level corresponding to a very large dimer. This is the first of two steps needed to create Sr2_2 in the absolute ground quantum state. Lattice-trapped Sr2_2 is of interest to frequency metrology and ultracold chemistry.Comment: 5 pages, 3 figure

    DEKAS - An evolutionary case-based reasoning system to support protection scheme design

    Get PDF
    This paper describes a decision support system being developed in conjunction with two UK utility companies to aid the design of electrical power transmission protection systems. A brief overview of the application domain is provided, followed by a description of the work carried out to date concerning the development and deployment of the Design Engineering Knowledge Application System (DEKAS). The paper then discusses the provision of intelligent decision support to the design engineer through the application of case-based reasoning (CBR). The key benefits from this will be outlined in conjunction with a relevant case study

    Precise study of asymptotic physics with subradiant ultracold molecules

    Get PDF
    Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subradiant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding 101310^{13} via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.Comment: 12 pages, 6 figure

    High-precision spectroscopy of ultracold molecules in an optical lattice

    Get PDF
    The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin 88^{88}Sr2_2 molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.Comment: 12 pages, 4 figure
    corecore