31,884 research outputs found

    The lepton asymmetry: the last chance for a critical-density cosmology?

    Get PDF
    We use a wide range of observations to constrain cosmological models possessing a significant asymmetry in the lepton sector, which offer perhaps the best chance of reconciling a critical-density Universe with current observations. The simplest case, with massless neutrinos, fails to fit many experimental data and does not lead to an acceptable model. If the neutrinos have mass of order one electron-volt (which is favoured by some neutrino observations), then models can be implemented which prove a good fit to microwave anisotropies and large-scale structure data. However, taking into account the latest microwave anisotropy results, especially those from Boomerang, we show that the model can no longer accommodate the observed baryon fraction in clusters. Together with the observed acceleration of the present Universe, this puts considerable pressure on such critical-density models

    Gas low pressure low flow rate metering system Patent

    Get PDF
    Flowmeters for sensing low fluid flow rate and pressure for application to respiration rate studie

    Coupling Non-Gravitational Fields with Simplicial Spacetimes

    Full text link
    The inclusion of source terms in discrete gravity is a long-standing problem. Providing a consistent coupling of source to the lattice in Regge Calculus (RC) yields a robust unstructured spacetime mesh applicable to both numerical relativity and quantum gravity. RC provides a particularly insightful approach to this problem with its purely geometric representation of spacetime. The simplicial building blocks of RC enable us to represent all matter and fields in a coordinate-free manner. We provide an interpretation of RC as a discrete exterior calculus framework into which non-gravitational fields naturally couple with the simplicial lattice. Using this approach we obtain a consistent mapping of the continuum action for non-gravitational fields to the Regge lattice. In this paper we apply this framework to scalar, vector and tensor fields. In particular we reconstruct the lattice action for (1) the scalar field, (2) Maxwell field tensor and (3) Dirac particles. The straightforward application of our discretization techniques to these three fields demonstrates a universal implementation of coupling source to the lattice in Regge calculus.Comment: 10 pages, no figures, Latex, fixed typos and minor corrections
    • …
    corecore