59 research outputs found

    Multiple bactericidal mechanisms of the zinc ionophore PBT2

    Get PDF
    Published 18 March 2020Globally, more antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance (AMR). The development of novel ionophores, a class of antimicrobials used exclusively in animals, holds promise as a strategy to replace or reduce essential human antimicrobials in veterinary practice. PBT2 is a zinc ionophore with recently demonstrated antibacterial activity against several Gram-positive pathogens, although the underlying mechanism of action is unknown. Here, we investigated the bactericidal mechanism of PBT2 in the bovine mastitis-causing pathogen, Streptococcus uberis In this work, we show that PBT2 functions as a Zn2+/H+ ionophore, exchanging extracellular zinc for intracellular protons in an electroneutral process that leads to cellular zinc accumulation. Zinc accumulation occurs concomitantly with manganese depletion and the production of reactive oxygen species (ROS). PBT2 inhibits the activity of the manganese-dependent superoxide dismutase, SodA, thereby impairing oxidative stress protection. We propose that PBT2-mediated intracellular zinc toxicity in S. uberis leads to lethality through multiple bactericidal mechanisms: the production of toxic ROS and the impairment of manganese-dependent antioxidant functions. Collectively, these data show that PBT2 represents a new class of antibacterial ionophores capable of targeting bacterial metal ion homeostasis and cellular redox balance. We propose that this novel and multitarget mechanism of PBT2 makes the development of cross-resistance to medically important antimicrobials unlikely.IMPORTANCE More antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance. Therefore, the elimination of antimicrobial crossover between human and veterinary medicine is of great interest. Unfortunately, the development of new antimicrobials is an expensive high-risk process fraught with difficulties. The repurposing of chemical agents provides a solution to this problem, and while many have not been originally developed as antimicrobials, they have been proven safe in clinical trials. PBT2, a zinc ionophore, is an experimental therapeutic that met safety criteria but failed efficacy checkpoints against both Alzheimer's and Huntington's diseases. It was recently found that PBT2 possessed potent antimicrobial activity, although the mechanism of bacterial cell death is unresolved. In this body of work, we show that PBT2 has multiple mechanisms of antimicrobial action, making the development of PBT2 resistance unlikely.Nichaela Harbison-Price, Scott A. Ferguson, Adam Heikal, George Taiaroa, Kiel Hards ... Christopher A. McDevitt ... et al

    The structural basis of bacterial manganese import

    Get PDF
    Metal ions are essential for all forms of life. In prokaryotes, ATP-binding cassette (ABC) permeases serve as the primary import pathway for many micronutrients including the first-row transition metal manganese. However, the structural features of ionic metal transporting ABC permeases have remained undefined. Here, we present the crystal structure of the manganese transporter PsaBC from Streptococcus pneumoniae in an open-inward conformation. The type II transporter has a tightly closed transmembrane channel due to "extracellular gating" residues that prevent water permeation or ion reflux. Below these residues, the channel contains a hitherto unreported metal coordination site, which is essential for manganese translocation. Mutagenesis of the extracellular gate perturbs manganese uptake, while coordination site mutagenesis abolishes import. These structural features are highly conserved in metal-specific ABC transporters and are represented throughout the kingdoms of life. Collectively, our results define the structure of PsaBC and reveal the features required for divalent cation transport.Stephanie L. Neville, Jennie Sjöhamn, Jacinta A. Watts, Hugo MacDermott-Opeskin, Stephen J. Fairweather, Katherine Ganio, Alex Carey Hulyer, Aaron P. McGrath, Andrew J. Hayes, Tess R. Malcolm, Mark R. Davies, Norimichi Nomura, So Iwata, Megan L. O’Mara, Megan J. Maher, Christopher A. McDevit

    Chemical synergy between ionophore PBT2 and zinc reverses antibiotic resistance

    Get PDF
    The World Health Organization reports that antibiotic-resistant pathogens represent an imminent global health disaster for the 21st century. Gram-positive superbugs threaten to breach last-line antibiotic treatment, and the pharmaceutical industry antibiotic development pipeline is waning. Here we report the synergy between ionophore-induced physiological stress in Gram-positive bacteria and antibiotic treatment. PBT2 is a safe-for-human-use zinc ionophore that has progressed to phase 2 clinical trials for Alzheimer's and Huntington's disease treatment. In combination with zinc, PBT2 exhibits antibacterial activity and disrupts cellular homeostasis in erythromycin-resistant group A Streptococcus (GAS), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). We were unable to select for mutants resistant to PBT2-zinc treatment. While ineffective alone against resistant bacteria, several clinically relevant antibiotics act synergistically with PBT2-zinc to enhance killing of these Gram-positive pathogens. These data represent a new paradigm whereby disruption of bacterial metal homeostasis reverses antibiotic-resistant phenotypes in a number of priority human bacterial pathogens.IMPORTANCE The rise of bacterial antibiotic resistance coupled with a reduction in new antibiotic development has placed significant burdens on global health care. Resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus are leading causes of community- and hospital-acquired infection and present a significant clinical challenge. These pathogens have acquired resistance to broad classes of antimicrobials. Furthermore, Streptococcus pyogenes, a significant disease agent among Indigenous Australians, has now acquired resistance to several antibiotic classes. With a rise in antibiotic resistance and reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. As stated by the WHO Director-General, "On current trends, common diseases may become untreatable. Doctors facing patients will have to say, Sorry, there is nothing I can do for you."Lisa Bohlmann, David M. P. De Oliveira, Ibrahim M. El-Deeb, Erin B. Brazel, Nichaela Harbison-Pric

    The structure and activity of the glutathione reductase from Streptococcus pneumonia

    No full text
    The glutathione reductase (GR) from Streptococcus pneumoniae is a flavoenzyme that catalyzes the reduction of oxidized glutathione (GSSG) to its reduced form (GSH) in the cytoplasm of this bacterium. The maintenance of an intracellular pool of GSH is critical for the detoxification of reactive oxygen and nitrogen species and for intracellular metal tolerance to ions such as zinc. Here, S. pneumoniae GR (SpGR) was overexpressed and purified and its crystal structure determined at 2.56 Å resolution. SpGR shows overall structural similarity to other characterized GRs, with a dimeric structure that includes an antiparallel β-sheet at the dimer interface. This observation, in conjunction with comparisons with the interface structures of other GR enzymes, allows the classification of these enzymes into three classes. Analyses of the kinetic properties of SpGR revealed a significantly higher value for Km(GSSG) (231.2 ± 24.7 µM) in comparison to other characterized GR enzymes.Mwilye Sikanyika, David Aragão, Christopher A. McDevitt and Megan J. Mahe

    A Model gamma-Alumina-Supported Rhenium-Platinum Catalyst Prepared from [Re2Pt(CO)12]: 1. Synthesis and Spectroscopic Characterization.

    Get PDF
    Catalysts supported on -Al2O3 were prepared from [Re2Pt(CO)12], and from Pt (NH3)4(NO3)2 and NH4ReO4. The former samples were characterized by infrared and X-ray photoelectron spectroscopies (XPS) and by temperature-programmed reduction (TPR); the latter were characterized by TPR. [Re2Pt(CO)12] was initially chemisorbed on the -Al2O3 surface. Upon treatment in H2 at about 150°C, the cluster fragmented and formed rhenium subcarbonyls, and at about 400°C the sample was decarbonylated. Adsorption of CO and of NO as probe molecules gave evidence of metallic Pt, but there was no evidence of adsorption on Re. The XPS data indicating the Re binding energies give evidence of the presence of low-valent cationic Re in the sample after the treatment at 400°C in H2. In contrast, when a mixture of samples of Re on -Al2O3 and Pt on -Al2O3 prepared from [H3Re3(CO)12] and [(CH3)2Pt(COD)], respectively, was treated under equivalent conditions, the Re was present in a high-valent cationic form (Re7+), and Pt was metallic. It is concluded that Pt facilitated the reduction of Re and that Pt was likely near the rhenium in the sample prepared from [Re2Pt(CO)12]. The TPR data are consistent with the foregoing results. The TPR data characterizing the samples prepared from the metal salts show that the degree of hydroxylation the -Al2O3 support significantly influenced the reduction of the Re and the Pt, but these data are not sufficient to determine the interactions between the two metals

    Human Tim8a, Tim8b and Tim13 are auxiliary assembly factors of mature Complex IV.

    No full text
    OnlinePublHuman Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.Alexander J Anderson, Jordan J Crameri, Ching-Seng Ang, Tess R Malcolm, Yilin Kang, Megan J Baker, Catherine S Palmer, Alice J Sharpe, Luke E Formosa, Katherine Ganio, Michael J Baker, Christopher A McDevitt, Michael T Ryan, Megan J Maher, Diana Stojanovsk

    Structural and functional characterizations of the C-terminal domains of CzcD proteins

    No full text
    Zinc is a potent antimicrobial component of the innate immune response at the host-pathogen interface. Bacteria subvert or resist host zinc insults by metal efflux pathways that include cation diffusion facilitator (CDF) proteins. The structural and functional examination of this protein class has been limited, with only the structures of the zinc transporter YiiP proteins from E. coli and Shewanella oneidensis described to date. Here, we determine the metal binding properties, solution quaternary structures and three dimensional architectures of the C-terminal domains of the metal transporter CzcD proteins from Cupriavidus metallidurans, Pseudomonas aeruginosa and Thermotoga maritima. We reveal significant diversity in the metal-binding properties and structures of these proteins and discover a potential novel mechanism for metal-promoted dimerization for the Cupriavidus metallidurans and Pseudomonas aeruginosa proteins.Saumya R. Udagedara, Daniel M. La Porta, Christian Spehar, Ghruta Purohit, Matthew J.A. Hein, Monique E. Fatmous, G. Patricia Casas Garcia, Katherine Ganio, Christopher A. McDevitt, Megan J. Mahe
    • …
    corecore