77 research outputs found

    I-REGION GENES ARE EXPRESSED ON T AND B LYMPHOCYTES : Studies of the Mixed Lymphocyte Reaction (MLR)

    Get PDF
    Unidirectional mixed lymphocyte reactions (MLR) were performed between mouse strains differing for various segments within the H-2 complex. Thymocytes and purified lymph node T cells and B cells were used as stimulator cells. In three of five combinations studied, differing only within the I region, both T and B cells stimulated in the MLR. This suggests that the region codes for both T- and B-cell surface structures. However, if the difference was restricted to one I subregion (I-C), only T cells stimulated. This finding suggests that some of the I-region genes may be expressed either in T or in B cells

    GENETIC CONTROL OF THE ANTIBODY RESPONSE : I. DEMONSTRATION OF DETERMINANT-SPECIFIC DIFFERENCES IN RESPONSE TO SYNTHETIC POLYPEPTIDE ANTIGENS IN TWO STRAINS OF INBRED MICE

    Get PDF
    Immunization of CBA and C57 mice with a branched, multichain synthetic polypeptide, poly (tyr,glu)-poly DL-ala--poly lys, ((T,G)-A--L), in Freund's complete adjuvant results in a tenfold or more difference in the antigen-binding capacity of sera from the two strains, although they respond equally to bovine serum albumin. Immunization of CBA x C57 F1, F1 x CBA, and F1 x C57 mice reveals definite genetic control of the response to (T,G)-A--L, which appears to be due to a single major genetic factor, with perhaps one or more modifying factors. Immunization of CBA and C57 mice with (H,G)-A--L, a synthetic polypeptide in which histidine replaces tyrosine, gives the opposite result, CBA's respond and C57's do not. From this, it appears that the genetic control of the response to (T,G)-A--L is specific for the antigenic determinant. The implications of these results are discussed

    GENETIC CONTROL OF THE IMMUNE RESPONSE : In Vitro Stimulation of Lymphocytes by (T,G)-A--L, (H,G)-A--L, and (Phe,G)-A--L

    Get PDF
    In vitro antigen-induced tritiated thymidine uptake has been used to study the response of sensitized lymphocytes to (T,G)-A--L, (H,G)-A--L, and (Phe,G)-A--L in responder and nonresponder strains of mice. The reaction is T-cell and macrophage dependent. Highly purified T cells (91% Thy 1.2 positive) are also responsive, suggesting that this in vitro lymphocyte transformation system is not B-cell dependent. Lymphocytes from high and low responder mice stimulated in vitro react as responders and nonresponders in a pattern identical to that seen with in vivo immunization. Stimulation occurs only if soluble antigen is added at physiological temperatures; antigen exposure at 4°C followed by washing and incubation at 37°C fails to induce lymphocyte transformation. Stimulation is specific for the immunizing antigen and does not exhibit the serologic cross-reactivity which is characteristic of these three antigens and their respective antisera. The reaction can be inhibited by anti-H-2 sera but not by anti-immunoglobulin sera. The anti-immunoglobulin sera did, however, inhibit lipopolysaccharide or pokeweed mitogen stimulation. These results suggest that the Ir-1A gene(s) are expressed in T cells, and that there are fundamental physiologic differences between T- and B-cell antigen recognition

    COMPARATIVE ANALYSIS OF ANTIGEN-BINDING T CELLS IN GENETIC HIGH AND LOW RESPONDER MICE

    Get PDF
    [125I](T,G)-A--L-binding T cells have been studied in mice whose ability to mount an immune response to (T,G)-A--L is under control of the H-2-linked Ir-1A gene. Nonimmunized high and low responder mice have approximately the same frequency of T-ABC. Following immunization, T-ABC proliferated only in high responders, but not in low responders, indicating expression of Ir-1A in T cells. When, for comparison, [125I]arsanyl-mouse serum albumin binding B and T cells were investigated in mice whose antibody response to the hapten arsanyl is controlled by an allotype-linked Ir gene, it was found that following immunization the number of B-ABC increased only in high responders. In contrast, T-ABC proliferated to the same extent in both high and low responders, suggesting exclusive expression of the allotype-linked Ir gene in the B-cell line. Preliminary studies indicate that anti-Ia sera inhibit neither B-ABC nor T-ABC

    GENETIC CONTROL OF THE ANTIBODY RESPONSE IN INBRED MICE : TRANSFER OF RESPONSE BY SPLEEN CELLS AND LINKAGE TO THE MAJOR HISTOCOMPATIBILITY (H-2) LOCUS

    Get PDF
    The transfer of spleen cells from (C3H x C57Bl/6) F1 mice, capable of responding to (T,G)-A--L, into irradiated C3H parental recipients, normally incapable of responding to (T,G)-A--L, transfers the ability to make either a primary or secondary immune response to this synthetic polypeptide antigen. This localizes the genetic control of the ability to respond to the spleen cell population and indicates that the genetic control is exerted upon a process directly related to antibody formation. Studies with congenic strains of mice and linkage studies in segregating backcross populations show that the ability to respond to (T,G)-A--L and (H,G)-A--L is linked to the H-2 locus and can thus be localized to the IXth mouse linkage group. Note Added in Proof: Of the three possible recombinant animals noted in Tables IV and V, two were infertile. The third animal was not a recombinant, since progeny testing and reimmunization showed that this animal was an H-22/H-2k heterozygote capable of responding well to (T,G)-A--L

    GENETIC CONTROL OF THE IMMUNE RESPONSE : FREQUENCY AND CHARACTERISTICS OF ANTIGEN-BINDING CELLS IN HIGH AND LOW RESPONDER MICE

    Get PDF
    The influence of immunization with (T,G)-A--L on the frequency and characteristics of [125I] (T,G)-A--L-binding cells (ABC) was investigated in high and low responder mice, whose ability to respond to (T,G)-A--L is under control of an H-2-linked immune response gene, Ir-1. Unimmunized high and low responder mice have about the same number of ABC in spleen and lymph nodes (6–12 ABC/104). However, after immunization with (T,G)-A--L in aqueous solution, ABC in high responders increase to a much greater extent than they do in low responders. By inhibition of ABC with class-specific anti-Ig sera, it was demonstrated that in nonimmune and primed mice antigen is bound to IgM receptors, which is in agreement with the exclusive production of 19S anti-(T,G)-A--L antibody in primed animals. In contrast, after secondary challenge with antigen, ABC in high and low responder mice have mainly IgG receptors, although under the conditions used for immunization, low responders are not able to produce detectable amounts of 7S anti-(T,G)-A--L antibody. From these results and from the evidence that low responders very probably have a T cell defect, it is suggested that the switchover from IgM to IgG precursor cells can be induced by antigen itself, without the action of specific T cells. Furthermore, the failure of marked proliferation of ABC in low responders after antigenic stimulation is explained by the lack of stimulation by specific T cells. By independent methods it has been shown that all ABC detected in this study are B cells. Preliminary experiments indicate that purified peripheral T cells bind antigen, but much less per cell than do B cells

    THE GENETIC CONTROL OF ANTIBODY SPECIFICITY

    Get PDF
    The immune response to a synthetic polypeptide built on multichain polyproline, poly-L-(Tyr,Glu)-poly-L-Pro-poly-L-Lys [(T,G)-Pro--L], in the offspring of a cross between DBA/1 and SJL mice is under a genetic control superficially similar to the one operating for the immune response to a similar synthetic polypeptide built on multichain polyalanine, poly-L-(Tyr,Glu)-poly-D,L-Ala-poly-L-Lys [(T,G)-A--L], in the offspring of a cross between CBA and C57 mice. In both cases, the genetic control is a quantitative trait in which the major gene(s) is (are) dominant and the trait is not linked to any of the known structural genes coding for mouse immunoglobulin heavy chains. However, the genetic control of response to (T, G)-Pro--L, designated immune response-3 (Ir-3), is qualitatively different from the one operating for (T,G)-A--L [immune response-1 (Ir-1)] in that it is not linked to the histocompatibility-2 (H-2) locus. A study of the immune response to a related polypeptide built on multichain polyproline, poly-L-(Phe,Glu)-poly-L-Pro-poly-L--Lys [(Phe, G)-Pro--L], in the DBA/1 x SJL cross has shown a genetic control of antibody specificity. F1 x DBA/1 backcross anti-(Phe, G)-Pro--L sera segregate in their ability to bind (T,G)-Pro--L, and there is no linkage of anti-(T,G)-Pro--L binding capacity with the H-2s allele of the SJL grandparent. F1 x SJL anti-(Phe, G)-Pro-L sera segregate in their capacity to bind poly-L-(Phe,Glu)-poly-D,L-Ala-poly-L-Lys [(Phe, G)-A--L] and the ability to bind (Phe, G)-A--L is clearly linked to the H-2q allele from the DBA/1 grandparent. Thus, in mice all responding well to a given antigen [(Phe, G)-Pro--L], the specificity of the antibodies produced [i.e., anti-(Phe,G) or anti-prolyl] is genetically determined. Cross-inhibition of binding m (DBA/1 x SJL)F1 anti-(Phe,G)-Pro--L antisera indicates that the anti-(Phe,G) and anti-prolyl specificities are a function of two separate and largely non-crossreacting antibody populations

    THE NATURE OF THE ANTIGENIC DETERMINANT IN A GENETIC CONTROL OF THE ANTIBODY RESPONSE

    Get PDF
    The response of inbred mouse strains to two polypeptides derived from multichain polyprolines, (T,G)-Pro--L and (Phe,G)-Pro--L, is different from the response of the same mouse strains to a similar series of polymers built on multi-poly-D,L-alanyl--poly-L-lysine, although the same short sequences of amino acids are attached to the side chains of the polypeptides in the two series. These results indicate that a portion of the side chain (e.g. polyalanine or polyproline) participates in the antigenic determinant. This was confirmed by studying the response of different mouse strains to two kinds of polypeptides: (T,G)-Pro-A--L 717 and 718 and (T,G)-A-Pro--L 719 and 721. Antibody assay of antisera to (Phe,G)-Pro--L with the cross-reacting antigens (T,G)-Pro--L and (Phe,G)-A-L indicates that different inbred mouse strains make antibodies specific for different parts of the same polypeptide. Thus, antibody from DBA/1 mice reacts almost exclusively with the (Phe,G) sequence, while SJL antisera bind only (T,G)-Pro--L and fail to bind (Phe,G)-A-L. The immune responses to the same amino acids on two different polypeptides (i.e. A--L and Pro--L) appear to be under separate genetic control
    • …
    corecore