13 research outputs found

    Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    Get PDF
    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 degrees C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase

    Decomposition of the ?? phase in as-cast and quenched U-Zr alloys

    No full text
    An investigation of the decomposition of the high temperature gamma phase in as-cast and quenched U-Zr alloys was conducted. Differential scanning calorimetry data clearly showed delta reversible arrow g transformations in alloys with <10 wt% Zr while XRD data did not contain any peaks which uniquely identify it's presence. Since delta phase forms via omega transformation, a comparison of the theoretical diffraction patterns for omega and delta revealed that the intensities of the peaks which uniquely identify the existence of delta when alpha-U is present, were either very weak, or were zero in omega, suggesting that the ambiguity can be explained if the phase present in these alloys is omega as opposed to delta. Our data are consistent with the presence of delta and omega in as-cast and quenched U-50Zr alloy, respectively, and (alpha+omega) in rest of the as-cast and quenched alloys. Based on the experimental data, the transformation sequence from gamma phase in U-Zr alloys is proposed.clos
    corecore