26,150 research outputs found

    Space Station Freedom altitude strategy

    Get PDF
    The Space Station Freedom (SSF) altitude strategy provides guidelines and assumptions to determine an altitude profile for Freedom. The process for determining an altitude profile incorporates several factors such as where the Space Shuttle will rendezvous with the SSF, when reboosts must occur, and what atmospheric conditions exist causing decay. The altitude strategy has an influence on all areas of SSF development and mission planning. The altitude strategy directly affects the micro-gravity environment for experiments, propulsion and control system sizing, and Space Shuttle delivery manifests. Indirectly the altitude strategy influences almost every system and operation within the Space Station Program. Evolution of the SSF altitude strategy has been a very dynamic process over the past few years. Each altitude strategy in turn has emphasized a different consideration. Examples include a constant Space Shuttle rendezvous altitude for mission planning simplicity, or constant micro-gravity levels with its inherent emphasis on payloads, or lifetime altitudes to provide a safety buffer to loss of control conditions. Currently a new altitude strategy is in development. This altitude strategy will emphasize Space Shuttle delivery optimization. Since propellant is counted against Space Shuttle payload-to-orbit capacity, lowering the rendezvous altitude will not always increase the net payload-to-orbit, since more propellant would be required for reboost. This altitude strategy will also consider altitude biases to account for Space Shuttle launch slips and an unexpected worsening of atmospheric conditions. Safety concerns will define a lower operational altitude limit, while radiation levels will define upper altitude constraints. The evolution of past and current SSF altitude strategies and the development of a new altitude strategy which focuses on operational issues as opposed to design are discussed

    Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies

    Get PDF
    We present a study of 107 galaxies, groups, and clusters spanning ~3 orders of magnitude in mass, ~5 orders of magnitude in central galaxy star formation rate (SFR), ~4 orders of magnitude in the classical cooling rate (dM/dt) of the intracluster medium (ICM), and ~5 orders of magnitude in the central black hole accretion rate. For each system in this sample, we measure dM/dt using archival Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by combining over 330 estimates from dozens of literature sources. With these data, we estimate the efficiency with which the ICM cools and forms stars, finding e_cool = SFR/(dM/dt) = 1.4 +/- 0.4% for systems with dM/dt > 30 Msun/yr. For these systems, we measure a slope in the SFR-dM/dt relation greater than unity, suggesting that the systems with the strongest cool cores are also cooling more efficiently. We propose that this may be related to, on average, higher black hole accretion rates in the strongest cool cores, which could influence the total amount (saturating near the Eddington rate) and dominant mode (mechanical vs radiative) of feedback. For systems with dM/dt < 30 Msun/yr, we find that the SFR and dM/dt are uncorrelated, and show that this is consistent with star formation being fueled at a low (but dominant) level by recycled ISM gas in these systems. We find an intrinsic log-normal scatter in SFR at fixed dM/dt of 0.52 +/- 0.06 dex, suggesting that cooling is tightly self-regulated over very long timescales, but can vary dramatically on short timescales. There is weak evidence that this scatter may be related to the feedback mechanism, with the scatter being minimized (~0.4 dex) in systems for which the mechanical feedback power is within a factor of two of the cooling luminosity.Comment: 16 pages, 10 figures, 6 tables. Submitted to ApJ. Comments welcome

    Noise transmission through plates into an enclosure

    Get PDF
    An analytical model is presented to predict noise transmission through elastic plates into a hard-walled rectangular cavity at low frequencies, that is, frequencies up through the first few plate and cavity natural frequencies. One or several nonoverlapping and independently vibrating panels are considered. The effects on noise transmission of different external-pressure excitations, plate boundary conditions, fluid parameters, structural parameters, and geometrical parameters were investigated

    A catalogue of solar cosmic ray events: IMPS 4 and 5, May 1967 - December 1972

    Get PDF
    This catalogue of solar cosmic ray events has been prepared for the use of solar physicists and other interested scientists. It contains some 185 solar particle events detected by the Goddard Space Flight Center Cosmic Ray Experiments on IMP's IV and V (Explorer 34 and 41) for the period May 1967 - December 1972. The data is presented in the form of hourly averages for three proton energy intervals - 0.9 - 1.6 MeV; 6 - 20 MeV and 20 - 80 MeV. In addition the time histories of .5 - 1.1 MeV electrons are shown on a separate scale. To assist in the identification of related solar events, the onset time of the electron event is indicated. The details of the instrumentation and detector techniques are described. Further descriptions of data reduction procedure and on the time-history plots are given

    Consideration of radar target glint from ST during OMV rendezvous

    Get PDF
    The nature of radar target glint and the factors upon which it depends when using the Hubble Space Telescope as a radar target is discussed. An analysis of the glint problem using a 35 MHz or 94 MHz radar on the orbital maneuvering vehicle is explored. A strategy for overcoming glint is suggested

    Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Get PDF
    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications

    Cosmic ray modulation and merged interaction regions

    Get PDF
    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s

    The Bulge-Halo Connection in Galaxies: A Physical Interpretation of the Vcirc-sigma_0 Relation

    Full text link
    We explore the dependence of the ratio of a galaxy's circular velocity, Vcirc, to its central velocity dispersion, sigma_0, on morphology, or equivalently total light concentration. Such a dependence is expected if light traces the mass. Over the full range of galaxy types, masses and brightnesses, and assuming that the gas velocity traces the circular velocity, we find that galaxies obey the relation log(Vcirc/sigma_0)= 0.63-0.11*C28 where C28=5log(r80/r20) and the radii are measured at 80 percent and 20 percent of the total light. Massive galaxies scatter about the Vcirc = sqrt(2)*sigma_0 line for isothermal stellar systems. Disk galaxies follow the simple relation Vcirc/sigma_0=2(1-B/T), where B/T is the bulge-to-total light ratio. For pure disks, C28~2.8, B/T -> 0, and Vcirc~=2*sigma_0. Self-consistent equilibrium galaxy models from Widrow & Dubinski (2005) constrained to match the size-luminosity and velocity-luminosity relations of disk galaxies fail to match the observed Vcirc/sigma_0 distribution. Furthermore, the matching of dynamical models for Vcirc(r)/sigma(r) with observations of dwarf and elliptical galaxies suffers from limited radial coverage and relatively large error bars; for dwarf systems, however, kinematical measurements at the galaxy center and optical edge suggest Vcirc(Rmax) > 2*sigma_0 (in contrast with past assumptions that Vcirc = sqrt(2)*sigma_0 for dwarfs.) The Vcirc-sigma_0-C28 relation has direct implications for galaxy formation and dynamical models, galaxy scaling relations, the mass function of galaxies, and the links between respective formation and evolution processes for a galaxy's central massive object, bulge, and dark matter halo.Comment: Accepted for publication in ApJL. Current version matches ApJL page requiremen
    corecore