2,626 research outputs found

    Biorthonormal Matrix-Product-State Analysis for Non-Hermitian Transfer-Matrix Renormalization-Group in the Thermodynamic Limit

    Full text link
    We give a thorough Biorthonormal Matrix-Product-State (BMPS) analysis of the Transfer-Matrix Renormalization-Group (TMRG) for non-Hermitian matrices in the thermodynamic limit. The BMPS is built on a dual series of reduced biorthonormal bases for the left and right Perron states of a non-Hermitian matrix. We propose two alternative infinite-size Biorthonormal TMRG (iBTMRG) algorithms and compare their numerical performance in both finite and infinite systems. We show that both iBTMRGs produce a dual infinite-BMPS (iBMPS) which are translationally invariant in the thermodynamic limit. We also develop an efficient wave function transformation of the iBTMRG, an analogy of McCulloch in the infinite-DMRG [arXiv:0804.2509 (2008)], to predict the wave function as the lattice size is increased. The resulting iBMPS allows for probing bulk properties of the system in the thermodynamic limit without boundary effects and allows for reducing the computational cost to be independent of the lattice size, which are illustrated by calculating the magnetization as a function of the temperature and the critical spin-spin correlation in the thermodynamic limit for a 2D classical Ising model.Comment: 14 pages, 9 figure

    Boundary quantum critical phenomena with entanglement renormalization

    Get PDF
    We extend the formalism of entanglement renormalization to the study of boundary critical phenomena. The multi-scale entanglement renormalization ansatz (MERA), in its scale invariant version, offers a very compact approximation to quantum critical ground states. Here we show that, by adding a boundary to the scale invariant MERA, an accurate approximation to the critical ground state of an infinite chain with a boundary is obtained, from which one can extract boundary scaling operators and their scaling dimensions. Our construction, valid for arbitrary critical systems, produces an effective chain with explicit separation of energy scales that relates to Wilson's RG formulation of the Kondo problem. We test the approach by studying the quantum critical Ising model with free and fixed boundary conditions.Comment: 8 pages, 12 figures, for a related work see arXiv:0912.289

    Magnetism in the dilute Kondo lattice model

    Get PDF
    The one dimensional dilute Kondo lattice model is investigated by means of bosonization for different dilution patterns of the array of impurity spins. The physical picture is very different if a commensurate or incommensurate doping of the impurity spins is considered. For the commensurate case, the obtained phase diagram is verified using a non-Abelian density-matrix renormalization-group algorithm. The paramagnetic phase widens at the expense of the ferromagnetic phase as the ff-spins are diluted. For the incommensurate case, antiferromagnetism is found at low doping, which distinguishes the dilute Kondo lattice model from the standard Kondo lattice model.Comment: 11 pages, 2 figure

    Matrix product decomposition and classical simulation of quantum dynamics in the presence of a symmetry

    Full text link
    We propose a refined matrix product state representation for many-body quantum states that are invariant under SU(2) transformations, and indicate how to extend the time-evolving block decimation (TEBD) algorithm in order to simulate time evolution in an SU(2) invariant system. The resulting algorithm is tested in a critical quantum spin chain and shown to be significantly more efficient than the standard TEBD.Comment: 5 pages, 4 figure

    From density-matrix renormalization group to matrix product states

    Full text link
    In this paper we give an introduction to the numerical density matrix renormalization group (DMRG) algorithm, from the perspective of the more general matrix product state (MPS) formulation. We cover in detail the differences between the original DMRG formulation and the MPS approach, demonstrating the additional flexibility that arises from constructing both the wavefunction and the Hamiltonian in MPS form. We also show how to make use of global symmetries, for both the Abelian and non-Abelian cases.Comment: Numerous small changes and clarifications, added a figur

    A Comparison of Measured Crab and Vela Glitch Healing Parameters with Predictions of Neutron Star Models

    Full text link
    There are currently two well-accepted models that explain how pulsars exhibit glitches, sudden changes in their regular rotational spin-down. According to the starquake model, the glitch healing parameter, Q, which is measurable in some cases from pulsar timing, should be equal to the ratio of the moment of inertia of the superfluid core of a neutron star (NS) to its total moment of inertia. Measured values of the healing parameter from pulsar glitches can therefore be used in combination with realistic NS structure models as one test of the feasibility of the starquake model as a glitch mechanism. We have constructed NS models using seven representative equations of state of superdense matter to test whether starquakes can account for glitches observed in the Crab and Vela pulsars, for which the most extensive and accurate glitch data are available. We also present a compilation of all measured values of Q for Crab and Vela glitches to date which have been separately published in the literature. We have computed the fractional core moment of inertia for stellar models covering a range of NS masses and find that for stable NSs in the realistic mass range 1.4 +/- 0.2 solar masses, the fraction is greater than 0.55 in all cases. This range is not consistent with the observational restriction Q < 0.2 for Vela if starquakes are the cause of its glitches. This confirms results of previous studies of the Vela pulsar which have suggested that starquakes are not a feasible mechanism for Vela glitches. The much larger values of Q observed for Crab glitches (Q > 0.7) are consistent with the starquake model predictions and support previous conclusions that starquakes can be the cause of Crab glitches.Comment: 8 pages, including 3 figures and 1 table. Accepted for publication in Ap

    Localized spin ordering in Kondo lattice models

    Get PDF
    Using a non-Abelian density matrix renormalization group method we determine the phase diagram of the Kondo lattice model in one dimension, by directly measuring the magnetization of the ground-state. This allowed us to discover a second ferromagnetic phase missed in previous approaches. The phase transitions are found to be continuous. The spin-spin correlation function is studied in detail, and we determine in which regions the large and small Fermi surfaces dominate. The importance of double-exchange ordering and its competition with Kondo singlet formation is emphasized in understanding the complexity of the model.Comment: Revtex, 4 pages, 4 eps figures embedde

    Polarimetric Properties of the Crab Pulsar between 1.4 and 8.4 GHz

    Get PDF
    New polarimetric observations of the Crab pulsar at frequencies between 1.4 and 8.4 GHz are presented. Additional pulse components discovered in earlier observations (Moffett & Hankins 1996, astro-ph/9604163) are found to have high levels of linear polarization, even at 8.4 GHz. No abrupt sweeps in position angle are found within pulse components; however, the position angle and rotational phase of the interpulse do change dramatically between 1.4 and 4.9 GHz. The multi-frequency profile morphology and polarization properties indicate a non-standard origin of the emission. Several emission geometries are discussed, but the one favored locates sites of emission both near the pulsar surface and in the outer magnetosphere.Comment: 20 pages, 7 postscript figures, uses aaspp4 Latex style. To appear in Volume 522 of The Astrophysical Journa

    Measuring pro-poor sectoral analysis for Pakistan: trickle down?

    Get PDF
    The study aims to establish a pro-poor growth index called the ‘Poverty Equivalent Growth Rate’, which considers both the extent of sectoral growth and the benefits reaching the poor in Pakistan, using 21 household surveys between 1964 and 2011. The result reveals that despite the positive signs in agriculture growth, the growth process may not be classifiable as pro-poor. The result points out that compared with the non-poor, the poor overall benefited less from the revitalisation of agricultural processes; however, the trend was reversed during 2002 to 2011 when the poverty equivalent growth rates are higher than the growth rate of industry, manufacturing, commodity producing and services value added, which shows sectoral growth favours the poor more than non-poor in Pakistan
    corecore