29 research outputs found

    Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy

    Get PDF
    AbstractLower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p=0.01) but were unchanged in controls (p=0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p<0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p=0.007 and p=0.001, respectively). Longitudinal increases in WMH (rs=0.04, p=0.86) or cerebral microbleeds (rs=−0.18, p=0.45) were not associated with the longitudinal decrease in BOLD amplitudes

    Brain iron content in cerebral amyloid angiopathy using quantitative susceptibility mapping

    Get PDF
    IntroductionCerebral amyloid angiopathy (CAA) is a small vessel disease that causes covert and symptomatic brain hemorrhaging. We hypothesized that persons with CAA would have increased brain iron content detectable by quantitative susceptibility mapping (QSM) on magnetic resonance imaging (MRI), and that higher iron content would be associated with worse cognition.MethodsParticipants with CAA (n = 21), mild Alzheimer’s disease with dementia (AD-dementia; n = 14), and normal controls (NC; n = 83) underwent 3T MRI. Post-processing QSM techniques were applied to obtain susceptibility values for regions of the frontal and occipital lobe, thalamus, caudate, putamen, pallidum, and hippocampus. Linear regression was used to examine differences between groups, and associations with global cognition, controlling for multiple comparisons using the false discovery rate method.ResultsNo differences were found between regions of interest in CAA compared to NC. In AD, the calcarine sulcus had greater iron than NC (ÎČ = 0.99 [95% CI: 0.44, 1.53], q &lt; 0.01). However, calcarine sulcus iron content was not associated with global cognition, measured by the Montreal Cognitive Assessment (p &gt; 0.05 for all participants, NC, CAA, and AD).DiscussionAfter correcting for multiple comparisons, brain iron content, measured via QSM, was not elevated in CAA compared to NC in this exploratory study

    Subcortical volumes in cerebral amyloid angiopathy compared with Alzheimer’s disease and controls

    Get PDF
    BackgroundPrevious reports have suggested that patients with cerebral amyloid angiopathy (CAA) may harbor smaller white matter, basal ganglia, and cerebellar volumes compared to age-matched healthy controls (HC) or patients with Alzheimer’s disease (AD). We investigated whether CAA is associated with subcortical atrophy.MethodsThe study was based on the multi-site Functional Assessment of Vascular Reactivity cohort and included 78 probable CAA (diagnosed according to the Boston criteria v2.0), 33 AD, and 70 HC. Cerebral and cerebellar volumes were extracted from brain 3D T1-weighted MRI using FreeSurfer (v6.0). Subcortical volumes, including total white matter, thalamus, basal ganglia, and cerebellum were reported as proportion (%) of estimated total intracranial volume. White matter integrity was quantified by the peak width of skeletonized mean diffusivity.ResultsParticipants in the CAA group were older (74.0 ± 7.0, female 44%) than the AD (69.7 ± 7.5, female 42%) and HC (68.8 ± 7.8, female 69%) groups. CAA participants had the highest white matter hyperintensity volume and worse white matter integrity of the three groups. After adjusting for age, sex, and study site, CAA participants had smaller putamen volumes (mean differences, −0.024% of intracranial volume; 95% confidence intervals, −0.041% to −0.006%; p = 0.005) than the HCs but not AD participants (−0.003%; −0.024 to 0.018%; p = 0.94). Other subcortical volumes including subcortical white matter, thalamus, caudate, globus pallidus, cerebellar cortex or cerebellar white matter were comparable between all three groups.ConclusionIn contrast to prior studies, we did not find substantial atrophy of subcortical volumes in CAA compared to AD or HCs, except for the putamen. Differences between studies may reflect heterogeneity in CAA presenting syndromes or severity

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Real-time Measurement of Cytosolic Free Calcium Concentration in Jurkat Cells during ELF Magnetic Field Exposure and Evaluation of the Role of Cell Cycle

    No full text
    Extremely low frequency magnetic fields (ELF MF) have been reported to alter a number of cell signaling pathways, including those involved in proliferation, differentiation and apoptosis where cytosolic free calcium ([Ca(2+)](c)) plays an important role. To better understand the biological conditions under which ELF MF exposure might alter [Ca(2+)](c), we measured [Ca(2+)](c) by ratiometric fluorescence spectrophotometry during exposure to ELF MF in Jurkat E6.1 cells synchronized to different phases of the cell cycle. Suspensions of cells were exposed either to a near zero MF (Null) or a 60 Hz, 100 microT sinusoidal MF superimposed upon a collinear 78.1 microT static MF (AC + DC). An initial series of experiments indicated that the maximum increase in [Ca(2+)](c) above baseline after stimulation with anti-CD3 was significantly higher in samples exposed to AC + DC (n = 30) compared to Null (n = 30) with the largest difference in G2-M enriched samples. However, in a second study with G2-M enriched cells, samples treated with AC + DC (n = 17) were not statistically different from Null-treated samples (n = 27). Detailed analysis revealed that the dynamics in [Ca(2+)](c) before and after stimulation with anti-CD3 were dissimilar between Null samples from each study. From the results, we concluded (i) that the ELF MF increased [Ca(2+)](c) during an antibody-induced signaling event, (ii) that the ELF MF effect did not depend to a large degree on cell cycle, and (iii) that a field-related change in [Ca(2+)](c) signaling appeared to correlate with features in the [Ca(2+)](c) dynamics. Future work could evaluate [Ca(2+)](c) dynamics in relation to the phase of the cell cycle and inter-study variation, which may reveal factors important for the observation of real-time effects of ELF MF on [Ca(2+)](c)

    White Matter Structural Connectivity Is Not Correlated to Cortical Resting-State Functional Connectivity over the Healthy Adult Lifespan

    No full text
    Structural connectivity (SC) of white matter (WM) and functional connectivity (FC) of cortical regions undergo changes in normal aging. As WM tracts form the underlying anatomical architecture that connects regions within resting state networks (RSNs), it is intuitive to expect that SC and FC changes with age are correlated. Studies that investigated the relationship between SC and FC in normal aging are rare, and have mainly compared between groups of elderly and younger subjects. The objectives of this work were to investigate linear SC and FC changes across the healthy adult lifespan, and to define relationships between SC and FC measures within seven whole-brain large scale RSNs. Diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI) data were acquired from 177 healthy participants (male/female = 69/108; aged 18–87 years). Forty cortical regions across both hemispheres belonging to seven template-defined RSNs were considered. Mean diffusivity (MD), fractional anisotropy (FA), mean tract length, and number of streamlines derived from DTI data were used as SC measures, delineated using deterministic tractography, within each RSN. Pearson correlation coefficients of rs-fMRI-obtained BOLD signal time courses between cortical regions were used as FC measure. SC demonstrated significant age-related changes in all RSNs (decreased FA, mean tract length, number of streamlines; and increased MD), and significant FC decrease was observed in five out of seven networks. Among the networks that showed both significant age related changes in SC and FC, however, SC was not in general significantly correlated with FC, whether controlling for age or not. The lack of observed relationship between SC and FC suggests that measures derived from DTI data that are commonly used to infer the integrity of WM microstructure are not related to the corresponding changes in FC within RSNs. The possible temporal lag between SC and FC will need to be addressed in future longitudinal studies to better elucidate the links between SC and FC changes in normal aging
    corecore