7 research outputs found

    Unravelling the controls on the molybdenum isotope ratios of river waters

    Get PDF
    The molybdenum (Mo) isotope ratios (δ98/95Mo) of river waters control the δ98/95Mo values of seawater and impact on the use of Mo isotope ratios as a proxy of past redox conditions. The δ98/95Mo values of river waters vary by more than 2 ‰, yet the relative roles of lithology versus fractionation during weathering remain contested. Here, we combine measurements from river waters (δ98/95Modiss), river bed materials (δ98/95MoBM) and soils from locations with contrasting lithology. The δ98/95Mo values of river bed materials (δ98/95MoBM), set by rock type, vary by ~1 ‰ between rivers in New Zealand, the Mackenzie Basin, and Iceland. However, the difference between dissolved and solid phase Mo isotopes (Δ98/95Modiss-BM) varies from +0.3 ‰ to +1.0 ‰. We estimate Mo removal from solution using the mobile trace element rhenium and find that it correlates with Δ98/95Modiss-BM across the sample set. The adsorption of Mo to Fe-Mn-(oxyhydr)oxides can explain the observed fractionation. Together, the amount of Mo released through dissolution and taken up by (oxyhydr)oxide formation on land may cause changes in the δ98/95Mo values of rivers, driving long term changes in the Mo isotope ratios of seawater

    Unravelling the controls on the molybdenum isotopic composition of rivers

    Get PDF
    Formation and crystallisation of the Lunar Magma Ocean (LMO) was one of the most incisive events during the early evolution of the Moon. Lunar Magma Ocean solidification concluded with the coeval formation of K-, REE- and P-rich components (KREEP) and an ilmenite-bearing cumulate (IBC) layer. Gravitational overturn of the lunar mantle generated eruptions of basaltic rocks with variable Ti contents, of which their δ49Ti variations may now reflect variable mixtures of ambient lunar mantle and the IBC. To better understand the processes generating the spectrum of lunar low-Ti and high-Ti basalts and the role of Ti-rich phases such as ilmenite, we determined the mass dependent Ti isotope composition of four KREEP-rich samples, 12 low-Ti, and eight high-Ti mare basalts by using a 47Ti-49Ti double spike. Our data reveal significant variations in δ49Ti for KREEP-rich samples (+0.117 to +0.296 ‰) and intra-group variations in the mare basalts (-0.030 to +0.055 ‰ for low-Ti and +0.009 to +0.115 ‰ for high-Ti basalts). We modelled the δ49Ti of KREEP using previously published HFSE data as well as the δ49Ti evolution during fractional crystallisation of the LMO. Both approaches yield δ49TiKREEP similar to measured values and are in excellent agreement with previous studies. The involvement of ilmenite in the petrogenesis of the lunar mare basalts is further evaluated by combining our results with element ratios of HFSE, U and Th, revealing that partial melting in an overturned lunar mantle and fractional crystallisation of ilmenite must be the main processes accounting for mass dependent Ti isotope variations in lunar basalts. Based on our results we can also exclude formation of high-Ti basalts by simple assimilation of ilmenite by ascending melts from the depleted lunar mantle. Rather, our data are in accord with melting of these basalts from a hybrid mantle source formed in the aftermath of gravitational lunar mantle overturn, which is in good agreement with previous Fe isotope data

    Felsic crust development in the Kaapvaal Craton, South Africa: A reference sample collection to investigate a billion years of geological history

    Get PDF
    The crust of the Kaapvaal craton accreted throughout the Archaean over nearly 1 billion years. It provides a unique example of the various geological processes that shape Earth's continental crust, and is illustrated by a reference collection of granitoids and mafic rocks (SWASA collection). This sample collection is fully characterised in term of age, major and trace elements, and documents the following multistage history of the craton. In the Barberton area, the initial stages of accretion (stage B·I, > 3.33 Ga and B.II, 3.28—3.21 Ga) correspond to the formation of a sodic (TTG) crust extracted from a near-chondritic reservoir. Stage B.III (ca. 3.1 Ga) corresponds to reworking of this crust, either through intracrustal melting, or via recycling of some material into the mantle and melting of this enriched mantle. Stage B.IV (2.85—2.7 Ga) corresponds to the emplacement of small, discrete plutons involving limited intracrustal reworking. The Northern Kaapvaal craton corresponds to a mobile belt flanking the Barberton cratonic core to the North. Stage NK·I (> 3.1 Ga) resembles stages B·I and B.II: formation of a TTG crust from a chondritic reservoir. In contrast, stage NK.II. (2.97–2.88 Ga) witnesses probable rifting of a cratonic fragment and formation of greenstone basins as well as a new generation of TTGs with both the mafic and felsic magmatism extracted from an isotopically depleted mantle (super-chondritic) reservoir. Intra-crustal reworking dominates stage NK.III (2.88–2.71 Ga), whereas sanukitoids and related granites, involving a mantle contaminated by recycled crustal material, are common during stage NK.IV (ca. 2.67 Ga)

    Rapid Cenozoic ingrowth of isotopic signatures simulating “HIMU” in ancient lithospheric mantle: Distinguishing source from process

    Get PDF
    Chemical and isotopic heterogeneities in the lithospheric mantle are increasingly being recognised on all scales of examination, although the mechanisms responsible for generating this variability are still poorly understood. To investigate the relative behaviour of different isotopic systems in off-cratonic mantle, and specifically the origin of the regional southwest Pacific “HIMU” (high time integrated 238U/204Pb) Pb isotopic signature, we present the first U–Th–Pb, Rb–Sr, Sm–Nd and Re–Os isotopic dataset for spinel peridotite xenoliths sampling the subcontinental lithospheric mantle (SCLM) beneath Zealandia. Strongly metasomatised xenoliths converge to a restricted range of Sr and Nd isotopic compositions (87Sr/86Sr = 0.7028–0.7033; εNd ≈ +3–+6) reflecting pervasive overprinting of their original melt depletion signatures by carbonatite-rich melts. In contrast, rare, weakly metasomatised samples possess radiogenic Nd isotopic compositions (εNd > +15) and unradiogenic Sr isotopic compositions (87Sr/86Sr < 0.7022). This is consistent with melt extraction at ca. 2.0 Ga and in accord with widespread Paleoproterozoic Re–Os model ages from both weakly metasomatised and the more numerous, strongly metasomatised xenoliths. The coupling of chalcophile (Os), and lithophile (Sr and Nd) melt depletion ages from peridotite xenoliths on a regional scale under Zealandia argues for preservation of a significant mantle keel (⩾2 million km3) associated with a large-scale Paleoproterozoic melting event. Lead isotopic compositions are highly variable with 206Pb/204Pb = 17.3–21.3 (n = 34) and two further samples with more extreme compositions of 22.4 and 25.4, but are not correlated with other isotopic data or U/Pb and Th/Pb ratios in either strongly or weakly metasomatised xenoliths; this signature is thus a recent addition to the lithospheric mantle. Lead model ages suggest that this metasomatism occurred in the last 200 m.y., with errorchrons from individual localities providing ages younger than 116 Ma. When considered in the regional tectonic context the Pb isotopic signatures are best explained through interaction of the lithospheric mantle with a weak upwelling mantle plume that contained carbonatitic domains at ca. 110–115 Ma. Projection of the measured high U/Pb and Th/Pb signatures into the future predicts extreme Pb isotopic values distinct from any recognised terrestrial reservoir. We suggest that this type of young, carbonatite-related radiogenic Pb signature with extreme 238U/204Pb and 232Th/204Pb, which is widely observed in the southwest Pacific, may reflect a secular change in mantle chemistry consistent with the increased prevalence of carbonatite sources during the Phanerozoic. This signature is referred to as “CarboHIMU”, to differentiate it from the originally defined HIMU representing an ancient lower mantle component present in some ocean island basalts

    Re-initiation of plutonism at the Gondwana margin after a magmatic hiatus: the bimodal Permian-Triassic Longwood Suite, New Zealand

    No full text
    The Cambrian to Cretaceous Tuhua Intrusives, New Zealand, preserve an igneous record of Phanerozoic subduction and crustal growth at the margin of Gondwana. Within the Tuhua Intrusives, the coeval gabbroic and trondhjemitic intrusions of the c. 261-243 Ma Longwood Suite stand out as being isotopically more primitive and chemically distinct from all other New Zealand plutonic suites. We present new U-Pb crystallization ages, trace element analyses and Sr-Nd isotope compositions of the Longwood Suite. U-Pb SHRIMP zircon ages of 258.5 ± 2.5 Ma, 256.0 ± 1.8 Ma, 247.8 ± 2.7 Ma and 243.2 ± 2.4 Ma obtained from plutons on Ruapuke Island, and a dike at Bluff, affirm the restricted time range and expand the known areal extent of the Longwood Suite. Longwood Suite granitoids are I-type and sodic (K/Na < 0.4), with distinctive low Rb and Nb/Ta, flat rare earth element patterns (La/YbN < 10), unradiogenic 87Sr/86Sr(t) (0.7029 to 0.7032) and radiogenic ε143Nd(t) (+6.3 to +8.2), compared to the nearby, calc-alkaline, Late Triassic Darran Suite I-type plutons of the Tuhua Intrusives. Stable Nd isotope ratios of Longwood Suite samples are highly variable (δ146/144Nd = 233 ppm) compared to global plutonic rocks (δ146/144Nd = 44 ppm) and reflect the removal of phosphate minerals. Collectively, these geochemical characteristics are consistent with generation of the granitoids by shallow (garnet-absent) melting of an amphibolitic residue, from which we infer relatively thin lithosphere. The Longwood Suite has a maximum areal addition rate of 43 km2/Ma, substantially less than the subsequent plutonic suites when the magmatic arc was fully established. We suggest a petrotectonic model whereby Gondwana continental margin crust was tectonically underplated by Permian intra-oceanic island arc crust and mantle lithosphere, which subsequently melted to generate the isotopically primitive gabbro and trondhjemite plutons of the Longwood Suite

    Trematode behaviours and the perceptual worlds of parasites

    No full text

    Antiinflammatory therapy with canakinumab for atherosclerotic disease

    No full text
    BACKGROUND: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. METHODS: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P=0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P=0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P=0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P=0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P=0.31). CONCLUSIONS: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. Copyright © 2017 Massachusetts Medical Society
    corecore