4,488 research outputs found

    The Sinking Shipping Industry

    Get PDF
    The United States has yet to develop a coordinated national shipping policy despite constant calls for a strong merchant marine dating from the country\u27s inception. The lack of such a policy implicates broader national interests than those of shippers and ship-owners, such as the national defense, diplmoatic relations with United States trading partners, and the United States balance of payments

    The Sinking Shipping Industry

    Get PDF
    The United States has yet to develop a coordinated national shipping policy despite constant calls for a strong merchant marine dating from the country\u27s inception. The lack of such a policy implicates broader national interests than those of shippers and ship-owners, such as the national defense, diplmoatic relations with United States trading partners, and the United States balance of payments

    Zero--Temperature Quantum Phase Transition of a Two--Dimensional Ising Spin--Glass

    Full text link
    We study the quantum transition at T=0T=0 in the spin-12\frac12 Ising spin--glass in a transverse field in two dimensions. The world line path integral representation of this model corresponds to an effective classical system in (2+1) dimensions, which we study by Monte Carlo simulations. Values of the critical exponents are estimated by a finite-size scaling analysis. We find that the dynamical exponent, zz, and the correlation length exponent, ν\nu, are given by z=1.5±0.05z = 1.5 \pm 0.05 and ν=1.0±0.1\nu = 1.0 \pm 0.1. Both the linear and non-linear susceptibility are found to diverge at the critical point.Comment: RevTeX 10 pages + 4 figures (appended as uuencoded, compressed tar-file), THP21-9

    Droplets in the coexistence region of the two-dimensional Ising model

    Full text link
    The two-dimensional Ising model with fixed magnetization is studied using Monte Carlo techniques. At the coexistence line, the macroscopic, extensive droplet of minority spins becomes thermally unstable by breaking up into microscopic clusters. Intriguing finite--size effects as well as singularities of thermal and cluster properties associated with the transition are discussed.Comment: 7 pages, 3 figures included, submitted to J. Phys. A: Math. Ge

    Lifespan theorem for constrained surface diffusion flows

    Get PDF
    We consider closed immersed hypersurfaces in R3\R^{3} and R4\R^4 evolving by a class of constrained surface diffusion flows. Our result, similar to earlier results for the Willmore flow, gives both a positive lower bound on the time for which a smooth solution exists, and a small upper bound on a power of the total curvature during this time. By phrasing the theorem in terms of the concentration of curvature in the initial surface, our result holds for very general initial data and has applications to further development in asymptotic analysis for these flows.Comment: 29 pages. arXiv admin note: substantial text overlap with arXiv:1201.657

    Exact renormalization of the random transverse-field Ising spin chain in the strongly ordered and strongly disordered Griffiths phases

    Full text link
    The real-space renormalization group (RG) treatment of random transverse-field Ising spin chains by Fisher ({\it Phys. Rev. B{\bf 51}, 6411 (1995)}) has been extended into the strongly ordered and strongly disordered Griffiths phases and asymptotically exact results are obtained. In the non-critical region the asymmetry of the renormalization of the couplings and the transverse fields is related to a non-linear quantum control parameter, Δ\Delta, which is a natural measure of the distance from the quantum critical point. Δ\Delta, which is found to stay invariant along the RG trajectories and has been expressed by the initial disorder distributions, stands in the singularity exponents of different physical quantities (magnetization, susceptibility, specific heat, etc), which are exactly calculated. In this way we have observed a weak-universality scenario: the Griffiths-McCoy singularities does not depend on the form of the disorder, provided the non-linear quantum control parameter has the same value. The exact scaling function of the magnetization with a small applied magnetic field is calculated and the critical point magnetization singularity is determined in a simple, direct way.Comment: 11 page

    The effect of rare regions on a disordered itinerant quantum antiferromagnet with cubic anisotropy

    Get PDF
    We study the quantum phase transition of an itinerant antiferromagnet with cubic anisotropy in the presence of quenched disorder, paying particular attention to the locally ordered spatial regions that form in the Griffiths region. We derive an effective action where these rare regions are described in terms of static annealed disorder. A one loop renormalization group analysis of the effective action shows that for order parameter dimensions p<4p<4 the rare regions destroy the conventional critical behavior. For order parameter dimensions p>4p>4 the critical behavior is not influenced by the rare regions, it is described by the conventional dirty cubic fixed point. We also discuss the influence of the rare regions on the fluctuation-driven first-order transition in this system.Comment: 6 pages RevTe

    Finite-size scaling properties of random transverse-field Ising chains : Comparison between canonical and microcanonical ensembles for the disorder

    Full text link
    The Random Transverse Field Ising Chain is the simplest disordered model presenting a quantum phase transition at T=0. We compare analytically its finite-size scaling properties in two different ensembles for the disorder (i) the canonical ensemble, where the disorder variables are independent (ii) the microcanonical ensemble, where there exists a global constraint on the disorder variables. The observables under study are the surface magnetization, the correlation of the two surface magnetizations, the gap and the end-to-end spin-spin correlation C(L)C(L) for a chain of length LL. At criticality, each observable decays typically as e−wLe^{- w \sqrt{L}} in both ensembles, but the probability distributions of the rescaled variable ww are different in the two ensembles, in particular in their asymptotic behaviors. As a consequence, the dependence in LL of averaged observables differ in the two ensembles. For instance, the correlation C(L)C(L) decays algebraically as 1/L in the canonical ensemble, but sub-exponentially as e−cL1/3e^{-c L^{1/3}} in the microcanonical ensemble. Off criticality, probability distributions of rescaled variables are governed by the critical exponent ν=2\nu=2 in both ensembles, but the following observables are governed by the exponent ν~=1\tilde \nu=1 in the microcanonical ensemble, instead of the exponent ν=2\nu=2 in the canonical ensemble (a) in the disordered phase : the averaged surface magnetization, the averaged correlation of the two surface magnetizations and the averaged end-to-end spin-spin correlation (b) in the ordered phase : the averaged gap. In conclusion, the measure of the rare events that dominate various averaged observables can be very sensitive to the microcanonical constraint.Comment: 24 page

    Griffiths-McCoy singularities in random quantum spin chains: Exact results through renormalization

    Full text link
    The Ma-Dasgupta-Hu renormalization group (RG) scheme is used to study singular quantities in the Griffiths phase of random quantum spin chains. For the random transverse-field Ising spin chain we have extended Fisher's analytical solution to the off-critical region and calculated the dynamical exponent exactly. Concerning other random chains we argue by scaling considerations that the RG method generally becomes asymptotically exact for large times, both at the critical point and in the whole Griffiths phase. This statement is checked via numerical calculations on the random Heisenberg and quantum Potts models by the density matrix renormalization group method.Comment: 4 pages RevTeX, 2 figures include
    • …
    corecore