4,840 research outputs found

    Finite Temperature and Dynamical Properties of the Random Transverse-Field Ising Spin Chain

    Full text link
    We study numerically the paramagnetic phase of the spin-1/2 random transverse-field Ising chain, using a mapping to non-interacting fermions. We extend our earlier work, Phys. Rev. 53, 8486 (1996), to finite temperatures and to dynamical properties. Our results are consistent with the idea that there are ``Griffiths-McCoy'' singularities in the paramagnetic phase described by a continuously varying exponent z(δ)z(\delta), where δ\delta measures the deviation from criticality. There are some discrepancies between the values of z(δ)z(\delta) obtained from different quantities, but this may be due to corrections to scaling. The average on-site time dependent correlation function decays with a power law in the paramagnetic phase, namely τ1/z(δ)\tau^{-1/z(\delta)}, where τ\tau is imaginary time. However, the typical value decays with a stretched exponential behavior, exp(cτ1/μ)\exp(-c\tau^{1/\mu}), where μ\mu may be related to z(δ)z(\delta). We also obtain results for the full probability distribution of time dependent correlation functions at different points in the paramagnetic phase.Comment: 10 pages, 14 postscript files included. The discussion of the typical time dependent correlation function has been greatly expanded. Other papers of APY are available on-line at http://schubert.ucsc.edu/pete

    Painleve versus Fuchs

    Full text link
    The sigma form of the Painlev{\'e} VI equation contains four arbitrary parameters and generically the solutions can be said to be genuinely ``nonlinear'' because they do not satisfy linear differential equations of finite order. However, when there are certain restrictions on the four parameters there exist one parameter families of solutions which do satisfy (Fuchsian) differential equations of finite order. We here study this phenomena of Fuchsian solutions to the Painlev{\'e} equation with a focus on the particular PVI equation which is satisfied by the diagonal correlation function C(N,N) of the Ising model. We obtain Fuchsian equations of order N+1N+1 for C(N,N) and show that the equation for C(N,N) is equivalent to the NthN^{th} symmetric power of the equation for the elliptic integral EE. We show that these Fuchsian equations correspond to rational algebraic curves with an additional Riccati structure and we show that the Malmquist Hamiltonian p,qp,q variables are rational functions in complete elliptic integrals. Fuchsian equations for off diagonal correlations C(N,M)C(N,M) are given which extend our considerations to discrete generalizations of Painlev{\'e}.Comment: 18 pages, Dedicated to the centenary of the publication of the Painleve VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    SCOZA for Monolayer Films

    Full text link
    We show the way in which the self-consistent Ornstein-Zernike approach (SCOZA) to obtaining structure factors and thermodynamics for Hamiltonian models can best be applied to two-dimensional systems such as thin films. We use the nearest-neighbor lattice gas on a square lattice as an illustrative example.Comment: 10 pages, 5 figure

    The importance of the Ising model

    Full text link
    Understanding the relationship which integrable (solvable) models, all of which possess very special symmetry properties, have with the generic non-integrable models that are used to describe real experiments, which do not have the symmetry properties, is one of the most fundamental open questions in both statistical mechanics and quantum field theory. The importance of the two-dimensional Ising model in a magnetic field is that it is the simplest system where this relationship may be concretely studied. We here review the advances made in this study, and concentrate on the magnetic susceptibility which has revealed an unexpected natural boundary phenomenon. When this is combined with the Fermionic representations of conformal characters, it is suggested that the scaling theory, which smoothly connects the lattice with the correlation length scale, may be incomplete for H0H \neq 0.Comment: 33 page

    High-precision estimate of g4 in the 2D Ising model

    Full text link
    We compute the renormalized four-point coupling in the 2d Ising model using transfer-matrix techniques. We greatly reduce the systematic uncertainties which usually affect this type of calculations by using the exact knowledge of several terms in the scaling function of the free energy. Our final result is g4=14.69735(3).Comment: 17 pages, revised version with minor changes, accepted for publication in Journal of Physics

    The saga of the Ising susceptibility

    Full text link
    We review developments made since 1959 in the search for a closed form for the susceptibility of the Ising model. The expressions for the form factors in terms of the nome qq and the modulus kk are compared and contrasted. The λ\lambda generalized correlations C(M,N;λ)C(M,N;\lambda) are defined and explicitly computed in terms of theta functions for M=N=0,1M=N=0,1.Comment: 19 pages, 1 figur

    Steady States of a Nonequilibrium Lattice Gas

    Full text link
    We present a Monte Carlo study of a lattice gas driven out of equilibrium by a local hopping bias. Sites can be empty or occupied by one of two types of particles, which are distinguished by their response to the hopping bias. All particles interact via excluded volume and a nearest-neighbor attractive force. The main result is a phase diagram with three phases: a homogeneous phase, and two distinct ordered phases. Continuous boundaries separate the homogeneous phase from the ordered phases, and a first-order line separates the two ordered phases. The three lines merge in a nonequilibrium bicritical point.Comment: 14 pages, 24 figure

    Excitation and Entanglement Transfer Near Quantum Critical Points

    Full text link
    Recently, there has been growing interest in employing condensed matter systems such as quantum spin or harmonic chains as quantum channels for short distance communication. Many properties of such chains are determined by the spectral gap between their ground and excited states. In particular this gap vanishes at critical points of quantum phase transitions. In this article we study the relation between the transfer speed and quality of such a system and the size of its spectral gap. We find that the transfer is almost perfect but slow for large spectral gaps and fast but rather inefficient for small gaps.Comment: submitted to Optics and Spectroscopy special issue for ICQO'200

    Ising Dynamics with Damping

    Full text link
    We show for the Ising model that is possible construct a discrete time stochastic model analogous to the Langevin equation that incorporates an arbitrary amount of damping. It is shown to give the correct equilibrium statistics and is then used to investigate nonequilibrium phenomena, in particular, magnetic avalanches. The value of damping can greatly alter the shape of hysteresis loops, and for small damping and high disorder, the morphology of large avalanches can be drastically effected. Small damping also alters the size distribution of avalanches at criticality.Comment: 8 pages, 8 figures, 2 colum

    Impurity spin relaxation in S=1/2 XX chains

    Full text link
    Dynamic autocorrelations (\alpha=x,z) of an isolated impurity spin in a S=1/2 XX chain are calculated. The impurity spin, defined by a local change in the nearest-neighbor coupling, is either in the bulk or at the boundary of the open-ended chain. The exact numerical calculation of the correlations employs the Jordan-Wigner mapping from spin operators to Fermi operators; effects of finite system size can be eliminated. Two distinct temperature regimes are observed in the long-time asymptotic behavior. At T=0 only power laws are present. At high T the x correlation decays exponentially (except at short times) while the z correlation still shows an asymptotic power law (different from the one at T=0) after an intermediate exponential phase. The boundary impurity correlations follow power laws at all T. The power laws for the z correlation and the boundary correlations can be deduced from the impurity-induced changes in the properties of the Jordan-Wigner fermion states.Comment: Final version to be published in Phys. Rev. B. Three references added, extended discussion of relation to previous wor
    corecore