4,294 research outputs found

    Spin Chains as Perfect Quantum State Mirrors

    Full text link
    Quantum information transfer is an important part of quantum information processing. Several proposals for quantum information transfer along linear arrays of nearest-neighbor coupled qubits or spins were made recently. Perfect transfer was shown to exist in two models with specifically designed strongly inhomogeneous couplings. We show that perfect transfer occurs in an entire class of chains, including systems whose nearest-neighbor couplings vary only weakly along the chain. The key to these observations is the Jordan-Wigner mapping of spins to noninteracting lattice fermions which display perfectly periodic dynamics if the single-particle energy spectrum is appropriate. After a half-period of that dynamics any state is transformed into its mirror image with respect to the center of the chain. The absence of fermion interactions preserves these features at arbitrary temperature and allows for the transfer of nontrivially entangled states of several spins or qubits.Comment: Abstract extended, introduction shortened, some clarifications in the text, one new reference. Accepted by Phys. Rev. A (Rapid Communications

    Average persistence in random walks

    Full text link
    We study the first passage time properties of an integrated Brownian curve both in homogeneous and disordered environments. In a disordered medium we relate the scaling properties of this center of mass persistence of a random walker to the average persistence, the latter being the probability P_pr(t) that the expectation value of the walker's position after time t has not returned to the initial value. The average persistence is then connected to the statistics of extreme events of homogeneous random walks which can be computed exactly for moderate system sizes. As a result we obtain a logarithmic dependence P_pr(t)~{ln(t)}^theta' with a new exponent theta'=0.191+/-0.002. We note on a complete correspondence between the average persistence of random walks and the magnetization autocorrelation function of the transverse-field Ising chain, in the homogeneous and disordered case.Comment: 6 pages LaTeX, 3 postscript figures include

    Lifespan theorem for constrained surface diffusion flows

    Get PDF
    We consider closed immersed hypersurfaces in R3\R^{3} and R4\R^4 evolving by a class of constrained surface diffusion flows. Our result, similar to earlier results for the Willmore flow, gives both a positive lower bound on the time for which a smooth solution exists, and a small upper bound on a power of the total curvature during this time. By phrasing the theorem in terms of the concentration of curvature in the initial surface, our result holds for very general initial data and has applications to further development in asymptotic analysis for these flows.Comment: 29 pages. arXiv admin note: substantial text overlap with arXiv:1201.657

    Vacancy localization in the square dimer model

    Get PDF
    We study the classical dimer model on a square lattice with a single vacancy by developing a graph-theoretic classification of the set of all configurations which extends the spanning tree formulation of close-packed dimers. With this formalism, we can address the question of the possible motion of the vacancy induced by dimer slidings. We find a probability 57/4-10Sqrt[2] for the vacancy to be strictly jammed in an infinite system. More generally, the size distribution of the domain accessible to the vacancy is characterized by a power law decay with exponent 9/8. On a finite system, the probability that a vacancy in the bulk can reach the boundary falls off as a power law of the system size with exponent 1/4. The resultant weak localization of vacancies still allows for unbounded diffusion, characterized by a diffusion exponent that we relate to that of diffusion on spanning trees. We also implement numerical simulations of the model with both free and periodic boundary conditions.Comment: 35 pages, 24 figures. Improved version with one added figure (figure 9), a shift s->s+1 in the definition of the tree size, and minor correction

    Monte Carlo study of the evaporation/condensation transition on different Ising lattices

    Full text link
    In 2002 Biskup et al. [Europhys. Lett. 60, 21 (2002)] sketched a rigorous proof for the behavior of the 2D Ising lattice gas, at a finite volume and a fixed excess \delta M of particles (spins) above the ambient gas density (spontaneous magnetisation). By identifying a dimensionless parameter \Delta (\delta M) and a universal constant \Delta_c, they showed in the limit of large system sizes that for \Delta < \Delta_c the excess is absorbed in the background (``evaporated'' system), while for \Delta > \Delta_c a droplet of the dense phase occurs (``condensed'' system). To check the applicability of the analytical results to much smaller, practically accessible system sizes, we performed several Monte Carlo simulations for the 2D Ising model with nearest-neighbour couplings on a square lattice at fixed magnetisation M. Thereby, we measured the largest minority droplet, corresponding to the condensed phase, at various system sizes (L=40, >..., 640). With analytic values for for the spontaneous magnetisation m_0, the susceptibility \chi and the Wulff interfacial free energy density \tau_W for the infinite system, we were able to determine \lambda numerically in very good agreement with the theoretical prediction. Furthermore, we did simulations for the spin-1/2 Ising model on a triangular lattice and with next-nearest-neighbour couplings on a square lattice. Again, finding a very good agreement with the analytic formula, we demonstrate the universal aspects of the theory with respect to the underlying lattice. For the case of the next-nearest-neighbour model, where \tau_W is unknown analytically, we present different methods to obtain it numerically by fitting to the distribution of the magnetisation density P(m).Comment: 14 pages, 17 figures, 1 tabl

    KINEMATIC ANALYSIS OF ELITE JAVELIN THROWERS

    Get PDF
    Research on various aspects of the throwing motion has indicated it to be a very complex movement (Atwater, 1979). Certain kinematic parameters appear t o be common determinants of successful performance regardless of the nature of the throwing task. Under ideal conditions (i.e., ignoring air resistance and the type of implement being thrown) the path, and hence distance thrown, is determined by the angle, height and velocity of release. Such an ideal analysis needs some modification for situations in which aerodynamics are considered. Since the release phase of the javelin throw encompasses these common throwing components as well as obvious aerodynamic influences, quantification of release characteristics which establish the initial conditions of f light is important

    Entropy and Correlation Functions of a Driven Quantum Spin Chain

    Full text link
    We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy, as well as the finite spin correlation length, are functions of the rate of sweep through the critical point. We analyze the anisotropic XY spin 1/2 model evolved with a full many-body evolution operator. With the help of Toeplitz determinants calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.Comment: 16 pgs, 7 fg

    Impurity spin relaxation in S=1/2 XX chains

    Full text link
    Dynamic autocorrelations (\alpha=x,z) of an isolated impurity spin in a S=1/2 XX chain are calculated. The impurity spin, defined by a local change in the nearest-neighbor coupling, is either in the bulk or at the boundary of the open-ended chain. The exact numerical calculation of the correlations employs the Jordan-Wigner mapping from spin operators to Fermi operators; effects of finite system size can be eliminated. Two distinct temperature regimes are observed in the long-time asymptotic behavior. At T=0 only power laws are present. At high T the x correlation decays exponentially (except at short times) while the z correlation still shows an asymptotic power law (different from the one at T=0) after an intermediate exponential phase. The boundary impurity correlations follow power laws at all T. The power laws for the z correlation and the boundary correlations can be deduced from the impurity-induced changes in the properties of the Jordan-Wigner fermion states.Comment: Final version to be published in Phys. Rev. B. Three references added, extended discussion of relation to previous wor

    Exactly solvable statistical model for two-way traffic

    Full text link
    We generalize a recently introduced traffic model, where the statistical weights are associated with whole trajectories, to the case of two-way flow. An interaction between the two lanes is included which describes a slowing down when two cars meet. This leads to two coupled five-vertex models. It is shown that this problem can be solved by reducing it to two one-lane problems with modified parameters. In contrast to stochastic models, jamming appears only for very strong interaction between the lanes.Comment: 6 pages Latex, submitted to J Phys.
    corecore