5,253 research outputs found

    Spin-spin Correlation in Some Excited States of Transverse Ising Model

    Full text link
    We consider the transverse Ising model in one dimension with nearest-neighbour interaction and calculate exactly the longitudinal spin-spin correlation for a class of excited states. These states are known to play an important role in the perturbative treatment of one-dimensional transverse Ising model with frustrated second-neighbour interaction. To calculate the correlation, we follow the earlier procedure of Wu, use Szego's theorem and also use Fisher-Hartwig conjecture. The result is that the correlation decays algebraically with distance (nn) as 1/√n1/\surd n and is oscillatory or non-oscillatory depending on the magnitude of the transverse field.Comment: 5 pages, 1 figur

    Antarctic Meteorites: A Statistical Look at a Uniquely Valuable Resource

    Get PDF
    As of the end of the 2018-19 field season, the U.S. Antarctic meteorite program has surpassed 23,000 meteorites collected. The U.S. collection is valuable in that it is classified in its entirety. The systematic methods employed to collect the meteorites have provided meteorites of more than 40 types, many of which are the first of their type ever recognized. One of the early drivers for consistent and methodical characterization of the entire U.S. Antarctic collection was to allow statistical comparisons. Early statistical assessments of the U.S. Antarctic collection examined mass distributions and the relative frequency of meteorite types as well as comparisons to a defined set of modern falls. Using these statistics argued that the flux of H chondrites changed over time used model size distributions to deconstruct the contribution of wind movement, meteorite supply and search losses to the Antarctic collection. Mass-based statistics and size distribution comparisons were examined by investigated various aspects of the statistics, including comparison with modern falls/Saharan finds. Also discuss geospatial statistics provides a comprehensive overview of the statistics of the Antarctic collections for the first 35 seasons of U.S. collection by ANSMET. Here we build upon that assessment and that from

    Localization transitions in non-Hermitian quantum mechanics

    Full text link
    We study the localization transitions which arise in both one and two dimensions when quantum mechanical particles described by a random Schr\"odinger equation are subjected to a constant imaginary vector potential. A path-integral formulation relates the transition to flux lines depinned from columnar defects by a transverse magnetic field in superconductors. The theory predicts that the transverse Meissner effect is accompanied by stretched exponential relaxation of the field into the bulk and a diverging penetration depth at the transition.Comment: 4 pages (latex) with 3 figures (epsf) embedded in the text using the style file epsf.st

    Griffiths-McCoy singularities in random quantum spin chains: Exact results through renormalization

    Full text link
    The Ma-Dasgupta-Hu renormalization group (RG) scheme is used to study singular quantities in the Griffiths phase of random quantum spin chains. For the random transverse-field Ising spin chain we have extended Fisher's analytical solution to the off-critical region and calculated the dynamical exponent exactly. Concerning other random chains we argue by scaling considerations that the RG method generally becomes asymptotically exact for large times, both at the critical point and in the whole Griffiths phase. This statement is checked via numerical calculations on the random Heisenberg and quantum Potts models by the density matrix renormalization group method.Comment: 4 pages RevTeX, 2 figures include

    Arkansas Wheat Performance Tests 2023-2024

    Get PDF
    Wheat variety performance tests are conducted each year in Ark- ansas by the University of Arkansas System Division of Agriculture’s Arkansas Crop Variety Improvement Program. The tests provide information to companies developing cultivars and marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating variety recommendations for small-grain producers. The tests were conducted at the Northeast Research and Extension Center at Keiser, the Vegetable Substation near Kibler, the Lon Mann Cotton Research Station near Marianna, the Pine Tree Research Station near Colt, and the Rohwer Research Station near Rohwer. Specific location and cultural practice information accompany each table

    Griffiths-McCoy Singularities in the Random Transverse-Field Ising Spin Chain

    Full text link
    We consider the paramagnetic phase of the random transverse-field Ising spin chain and study the dynamical properties by numerical methods and scaling considerations. We extend our previous work [Phys. Rev. B 57, 11404 (1998)] to new quantities, such as the non-linear susceptibility, higher excitations and the energy-density autocorrelation function. We show that in the Griffiths phase all the above quantities exhibit power-law singularities and the corresponding critical exponents, which vary with the distance from the critical point, can be related to the dynamical exponent z, the latter being the positive root of [(J/h)^{1/z}]_av=1. Particularly, whereas the average spin autocorrelation function in imaginary time decays as [G]_av(t)~t^{-1/z}, the average energy-density autocorrelations decay with another exponent as [G^e]_av(t)~t^{-2-1/z}.Comment: 8 pages RevTeX, 8 eps-figures include

    Exact renormalization of the random transverse-field Ising spin chain in the strongly ordered and strongly disordered Griffiths phases

    Full text link
    The real-space renormalization group (RG) treatment of random transverse-field Ising spin chains by Fisher ({\it Phys. Rev. B{\bf 51}, 6411 (1995)}) has been extended into the strongly ordered and strongly disordered Griffiths phases and asymptotically exact results are obtained. In the non-critical region the asymmetry of the renormalization of the couplings and the transverse fields is related to a non-linear quantum control parameter, Δ\Delta, which is a natural measure of the distance from the quantum critical point. Δ\Delta, which is found to stay invariant along the RG trajectories and has been expressed by the initial disorder distributions, stands in the singularity exponents of different physical quantities (magnetization, susceptibility, specific heat, etc), which are exactly calculated. In this way we have observed a weak-universality scenario: the Griffiths-McCoy singularities does not depend on the form of the disorder, provided the non-linear quantum control parameter has the same value. The exact scaling function of the magnetization with a small applied magnetic field is calculated and the critical point magnetization singularity is determined in a simple, direct way.Comment: 11 page

    Surface Magnetization and Critical Behavior of Aperiodic Ising Quantum Chains

    Full text link
    We consider semi-infinite two-dimensional layered Ising models in the extreme anisotropic limit with an aperiodic modulation of the couplings. Using substitution rules to generate the aperiodic sequences, we derive functional equations for the surface magnetization. These equations are solved by iteration and the surface magnetic exponent can be determined exactly. The method is applied to three specific aperiodic sequences, which represent different types of perturbation, according to a relevance-irrelevance criterion. On the Thue-Morse lattice, for which the modulation is an irrelevant perturbation, the surface magnetization vanishes with a square root singularity, like in the homogeneous lattice. For the period-doubling sequence, the perturbation is marginal and the surface magnetic exponent varies continuously with the modulation amplitude. Finally, the Rudin-Shapiro sequence, which corresponds to the relevant case, displays an anomalous surface critical behavior which is analyzed via scaling considerations: Depending on the value of the modulation, the surface magnetization either vanishes with an essential singularity or remains finite at the bulk critical point, i.e., the surface phase transition is of first order.Comment: 8 pages, 7 eps-figures, uses RevTex and epsf, minor correction

    2D Potts Model Correlation Lengths: Numerical Evidence for ξo=ξd\xi_o = \xi_d at βt\beta_t

    Full text link
    We have studied spin-spin correlation functions in the ordered phase of the two-dimensional qq-state Potts model with q=10q=10, 15, and 20 at the first-order transition point βt\beta_t. Through extensive Monte Carlo simulations we obtain strong numerical evidence that the correlation length in the ordered phase agrees with the exactly known and recently numerically confirmed correlation length in the disordered phase: ξo(βt)=ξd(βt)\xi_o(\beta_t) = \xi_d(\beta_t). As a byproduct we find the energy moments in the ordered phase at βt\beta_t in very good agreement with a recent large qq-expansion.Comment: 11 pages, PostScript. To appear in Europhys. Lett. (September 1995). See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm
    • …
    corecore