64 research outputs found

    Biochemical Effects of Carbohydrate Supplementation in a Simulated Competition of Short Terrestrial Duathlon

    Get PDF
    The purpose of the present study was to investigate the biochemical effects of carbohydrate supplementation in a simulated competition of short terrestrial duathlon. Ten duathletes participated in a simulated competition of short terrestrial duathlon 30 minutes after the ingestion of a 6% (30 g/500 ml) maltodextrin solution (MALT) or a placebo (PLA). This solution was also ingested every 15 minutes during the competition (12 g/200 ml); and immediately after the competition (18 g/300 ml). Samples of blood were collected at 3 time points: 1) at rest 1 hour before the beginning of the competition; 2) during the competition (approximately 1 hour and 45 minutes after the 1st collection); 3) immediately after the competition. Blood was analyzed for blood glucose, lactate, insulin and cortisol. Significant differences were observed in relation to blood glucose levels between MALT and PLA in the post-competition phase. There was also a significant difference in the lactate levels observed between MALT and PLA during the competition phase. Similarly, a significant difference in the cortisol concentrations during and after the competition phases (MALT and PLA) were observed. We conclude that maltodextrin supplementation appears to be beneficial during short terrestrial duathlon competition as evidenced by biochemical markers

    EMG-Normalised Kinase Activation during Exercise Is Higher in Human Gastrocnemius Compared to Soleus Muscle

    Get PDF
    In mice, certain proteins show a highly confined expression in specific muscle groups. Also, resting and exercise/contraction-induced phosphorylation responses are higher in rat skeletal muscle with low mitochondrial content compared to muscles with high mitochondrial content, possibly related to differential reactive oxygen species (ROS)-scavenging ability or resting glycogen content. To evaluate these parameters in humans, biopsies from soleus, gastrocnemius and vastus lateralis muscles were taken before and after a 45 min inclined (15%) walking exercise bout at 69% VO2max aimed at simultaneously activating soleus and gastrocnemius in a comparable dynamic work-pattern. Hexokinase II and GLUT4 were 46–59% and 26–38% higher (p<0.05) in soleus compared to the two other muscles. The type I muscle fiber percentage was highest in soleus and lowest in vastus lateralis. No differences were found in protein expression of signalling proteins (AMPK subunits, eEF2, ERK1/2, TBC1D1 and 4), mitochondrial markers (F1 ATPase and COX1) or ROS-handling enzymes (SOD2 and catalase). Gastrocnemius was less active than soleus measured as EMG signal and glycogen use yet gastrocnemius displayed larger increases than soleus in phosphorylation of AMPK Thr172, eEF2 Thr56 and ERK 1/2 Thr202/Tyr204 when normalised to the mean relative EMG-signal. In conclusion, proteins with muscle-group restricted expression in mice do not show this pattern in human lower extremity muscle groups. Nonetheless the phosphorylation-response is greater for a number of kinase signalling pathways in human gastrocnemius than soleus at a given activation-intensity. This may be due to the combined subtle effects of a higher type I muscle fiber content and higher training status in soleus compared to gastrocnemius muscle

    Serum from Calorie-Restricted Rats Activates Vascular Cell eNOS through Enhanced Insulin Signaling Mediated by Adiponectin

    Get PDF
    eNOS activation resulting in mitochondrial biogenesis is believed to play a central role in life span extension promoted by calorie restriction (CR). We investigated the mechanism of this activation by treating vascular cells with serum from CR rats and found increased Akt and eNOS phosphorylation, in addition to enhanced nitrite release. Inhibiting Akt phosphorylation or immunoprecipitating adiponectin (found in high quantities in CR serum) completely prevented the increment in nitrite release and eNOS activation. Overall, we demonstrate that adiponectin in the serum from CR animals increases NO• signaling by activating the insulin pathway. These results suggest this hormone may be a determinant regulator of the beneficial effects of CR
    • …
    corecore