145 research outputs found

    A novel non-Fermi-liquid state in the iron-pnictide FeCrAs

    Full text link
    We report transport and thermodynamic properties of stoichiometric single crystals of the hexagonal iron-pnictide FeCrAs. The in-plane resistivity shows an unusual "non-metallic" dependence on temperature T, rising continuously with decreasing T from ~ 800 K to below 100 mK. The c-axis resistivity is similar, except for a sharp drop upon entry into an antiferromagnetic state at T_N 125 K. Below 10 K the resistivity follows a non-Fermi-liquid power law, rho(T) = rho_0 - AT^x with x<1, while the specific heat shows Fermi liquid behaviour with a large Sommerfeld coefficient, gamma ~ 30 mJ/mol K^2. The high temperature properties are reminiscent of those of the parent compounds of the new layered iron-pnictide superconductors, however the T -> 0 properties suggest a new class of non-Fermi liquid.Comment: 6 pages, 4 figure

    PCV2 CARDIOVASCULAR RISK FACTORS IN ACUTE CORONARY SYNDROME PATIENTS UNDERGOING PERCUTANEOUS CORONARY INTERVENTION IN FIVE EUROPEAN COUNTRIES

    Get PDF

    de Haas-van Alphen Study of Role of 4f Electrons in Antiferromagnetic CeZn₁₁ as Compared to its Nonmagnetic Analog LaZn₁₁

    Get PDF
    We present a de Haas-van Alphen study of the Fermi surface of the low-temperature antiferromagnet CeZn11 and its nonmagnetic analog LaZn11, measured by torque magnetometry up to fields of 33T and at temperatures down to 320mK. Both systems possess similar de Haas-van Alphen frequencies, with three clear sets of features -- ranging from 50T to 4kT -- corresponding to three bands of a complex Fermi surface, with an expected fourth band also seen weakly in CeZn11. The effective masses of the charge carriers are very light ( \u3c 1me) in LaZn11 but a factor of 2-4 larger in CeZn11, indicative of stronger electronic correlations. We perform detailed density functional theory (DFT) calculations for CeZn11 and find that only DFT+U calculations with U = 1.5eV, which localize the 4f states, provide a good match to the measured de Haas-van Alphen frequencies, once the presence of magnetic breakdown orbits is also considered. Our study suggests that the Fermi surface of CeZn11 is very close to that of LaZn11 being dominated by Zn 3d, as the Ce 4f states are localized and have little influence on its electronic structure, however, they are responsible for its magnetic order and contribute to enhance electronic correlations

    The Fermi surface and f-valence electron count of UPt3

    Full text link
    Combining old and new de Haas-van Alphen (dHvA) and magnetoresistance data, we arrive at a detailed picture of the Fermi surface of the heavy fermion superconductor UPt3. Our work was partially motivated by a new proposal that two 5f valence electrons per formula unit in UPt3 are localized by correlation effects -- agreement with previous dHvA measurements of the Fermi surface was invoked in its support. Comprehensive comparison with our new observations shows that this 'partially localized' model fails to predict the existence of a major sheet of the Fermi surface, and is therefore less compatible with experiment than the originally proposed 'fully itinerant' model of the electronic structure of UPt3. In support of this conclusion, we offer a more complete analysis of the fully itinerant band structure calculation, where we find a number of previously unrecognized extremal orbits on the Fermi surface.Comment: 23 pages, 12 figures, latex, iopart clas

    Evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 on entering the superconducting dome

    Get PDF
    Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 as function of isoelectric substitution (As/P) for 0.41<x<1 (T_c up to 25 K). We find that the volume of electron and hole Fermi surfaces shrink linearly with decreasing x. This shrinking is accompanied by a strong increase in the quasiparticle effective mass as x is tuned toward the maximum T_c. It is likely that these trends originate from the many-body interaction which give rise to superconductivity, rather than the underlying one-electron bandstructure.Comment: 4 page
    • 

    corecore