4,408 research outputs found

    Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps

    Full text link
    A continuum model for the effective spin orbit interaction in graphene is derived from a tight-binding model which includes the π\pi and σ\sigma bands. We analyze the combined effects of the intra-atomic spin-orbit coupling, curvature, and applied electric field, using perturbation theory. We recover the effective spin-orbit Hamiltonian derived recently from group theoretical arguments by Kane and Mele. We find, for flat graphene, that the intrinsic spin-orbit coupling \Hi \propto \Delta^ 2 and the Rashba coupling due to a perpendicular electric field E{\cal E}, ΔE∝Δ\Delta_{\cal E} \propto \Delta, where Δ\Delta is the intra-atomic spin-orbit coupling constant for carbon. Moreover we show that local curvature of the graphene sheet induces an extra spin-orbit coupling term Δcurv∝Δ\Delta_{\rm curv} \propto \Delta. For the values of E\cal E and curvature profile reported in actual samples of graphene, we find that \Hi < \Delta_{\cal E} \lesssim \Delta_{\rm curv}. The effect of spin-orbit coupling on derived materials of graphene, like fullerenes, nanotubes, and nanotube caps, is also studied. For fullerenes, only \Hi is important. Both for nanotubes and nanotube caps Δcurv\Delta_{\rm curv} is in the order of a few Kelvins. We reproduce the known appearance of a gap and spin-splitting in the energy spectrum of nanotubes due to the spin-orbit coupling. For nanotube caps, spin-orbit coupling causes spin-splitting of the localized states at the cap, which could allow spin-dependent field-effect emission.Comment: Final version. Published in Physical Review

    Constraints on the distance to SGR 1806-20 from HI absorption

    Full text link
    The giant flare detected from the magnetar SGR 1806-20 on 2004 December 27 had a fluence more than 100 times higher than the only two other SGR flares ever recorded. Whereas the fluence is independent of distance, an estimate for the luminosity of the burst depends on the source's distance, which has previously been argued to be ~15 kpc. The burst produced a bright radio afterglow, against which Cameron et al. (2005) have measured an HI absorption spectrum. This has been used to propose a revised distance to SGR 1806-20 of between 6.4 and 9.8 kpc. Here we analyze this absorption spectrum, and compare it both to HI emission data from the Southern Galactic Plane Survey and to archival 12-CO survey data. We confirm ~6 kpc, as a likely lower limit on the distance to SGR 1806-20, but argue that it is difficult to place an upper limit on the distance to SGR 1806-20 from the HI data currently available. The previous value of ~15 kpc thus remains the best estimate of the distance to the source.Comment: 3 pages, 1 embedded EPS figure. Added sentences to end of Abstract and Conclusion, clarifying that most likely distance is 15 kpc. ApJ Letters, in pres

    Shot Noise in Graphene

    Full text link
    We report measurements of current noise in single- and multi-layer graphene devices. In four single-layer devices, including a p-n junction, the Fano factor remains constant to within +/-10% upon varying carrier type and density, and averages between 0.35 and 0.38. The Fano factor in a multi-layer device is found to decrease from a maximal value of 0.33 at the charge-neutrality point to 0.25 at high carrier density. These results are compared to theoretical predictions for shot noise in ballistic and disordered graphene.Comment: related papers available at http://marcuslab.harvard.ed

    1420 MHz Continuum Absorption Towards Extragalactic Sources in the Galactic Plane

    Full text link
    We present a 21-cm emission-absorption study towards extragalactic sources in the Canadian Galactic Plane Survey (CGPS). We have analyzed HI spectra towards 437 sources with S > 150 mJy, giving us a source density of 0.6 sources per square degree at arcminute resolution. We present the results of a first analysis of the HI temperatures, densities, and feature statistics. Particular emphasis is placed on 5 features with observed spin temperatures below 40 K. We find most spin temperatures in the range from 40 K to 300 K. A simple HI two-component model constrains the bulk of the cold component to temperatures (T_c) between 40 K and 100 K. T_c peaks in the Perseus arm region and clearly drops off with Galactocentric radius, R, beyond that. The HI density follows this trend, ranging from a local value of 0.4 cm^{-3} to less than 0.1 cm^{-3} at R = 20 kpc. We find that HI emission alone on average traces about 75% of the total HI column density, as compared to the total inferred by the emission and absorption. Comparing the neutral hydrogen absorption to CO emission no correlation is found in general, but all strong CO emission is accompanied by a visible HI spectral feature. Finally, the number of spectral HI absorption features per kpc drop off exponentially with increasing R.Comment: 13 pages, 13 figures, Accepted for March 2004 Ap

    Fitting Together the HI Absorption and Emission in the SGPS

    Get PDF
    In this paper we study 21-cm absorption spectra and the corresponding emission spectra toward bright continuum sources in the test region (326deg< l < 333 deg) of the Southern Galactic Plane Survey. This survey combines the high resolution of the Australia Telescope Compact Array with the full brightness temperature information of the Parkes single dish telescope. In particular, we focus on the abundance and temperature of the cool atomic clouds in the inner galaxy. The resulting mean opacity of the HI, , is measured as a function of Galactic radius; it increases going in from the solar circle, to a peak in the molecular ring of about four times its local value. This suggests that the cool phase is more abundant there, and colder, than it is locally. The distribution of cool phase temperatures is derived in three different ways. The naive, ``spin temperature'' technique overestimates the cloud temperatures, as expected. Using two alternative approaches we get good agreement on a histogram of the cloud temperatures, T(cool), corrected for blending with warm phase gas. The median temperature is about 65 K, but there is a long tail reaching down to temperatures below 20 K. Clouds with temperatures below 40 K are common, though not as common as warmer clouds (40 to 100 K). Using these results we discuss two related quantities, the peak brightness temperature seen in emission surveys, and the incidence of clouds seen in HI self-absorption. Both phenomena match what would be expected based on our measurements of and T(cool).Comment: 50 pages, 20 figure

    The magnetic field of the Large Magellanic Cloud revealed through Faraday rotation

    Full text link
    We have measured the Faraday rotation toward a large sample of polarized radio sources behind the Large Magellanic Cloud (LMC), to determine the structure of this galaxy's magnetic field. The magnetic field of the LMC consists of a coherent axisymmetric spiral of field strength ~1 microgauss. Strong fluctuations in the magnetic field are also seen, on small (<0.5 parsecs) and large (~100 parsecs) scales. The significant bursts of recent star formation and supernova activity in the LMC argue against standard dynamo theory, adding to the growing evidence for rapid field amplification in galaxies.Comment: 15 pages, including 3 embedded EPS figures (1 color, 2 b/w) plus supporting on-line material; uses scicite.sty. To appear in Science, vol 307, number 5715 (11 March 2005

    Relationship between cardiovascular risk and lipid testing in one health care system: a retrospective cohort study.

    Get PDF
    BackgroundThe US Preventive Services Taskforce (USPSTF) recommends routine lipid screening beginning age 35 for men [1]. For women age 20 and older, as well as men age 20-34, screening is recommended if cardiovascular risk factors are present. Prior research has focused on underutilization but not overuse of lipid testing. The objective is to document over- and under-use of lipid testing in an insured population of persons at low, moderate and high cardiovascular disease (CVD) risk for persons not already on statins.MethodsThe study is a retrospective cohort study that included all adults without prior CVD who were continuously enrolled in a large integrated healthcare system from 2005 to 2010. Measures included lipid test frequency extracted from administrative data and Framingham cardiovascular risk equations applied using electronic medical record data. Five year lipid testing patterns were examined by age, sex and CVD risk. Generalized linear models were used to estimate the relative risk for over testing associated with patient characteristics.ResultsAmong males and females for whom testing is not recommended, 35.8 % and 61.5 % received at least one lipid test in the prior 5 years and 8.4 % and 24.4 % had two or more. Over-testing was associated with age, race, comorbidity, primary care use and neighborhood income. Among individuals at moderate and high-risk (not already treated with statins) and for whom screening is recommended, between 21.4 % and 25.1 % of individuals received no screening in the prior 5 years.ConclusionsBased on USPSTF lipid screening recommendations, this study documents substantial over-testing among individuals with low CVD risk and under-testing among individuals with moderate to high-risk not already on statins. Opportunity exists to better focus lipid screening efforts appropriate to CVD risk
    • 

    corecore