2,443 research outputs found

    Competition between noise and coupling in the induction of synchronisation.

    Get PDF
    We apply a Fokker-Planck analysis to investigate the relative influences of coupling strength and noise on the synchronisation of two phase oscillators. We go beyond earlier studies of noise-induced synchronisation (without couplings) and coupling-induced synchronisation (without common noise) to consider both effects together, and we obtain a result that is very different from a straightforward superposition of the effects of each agent acting alone: two regimes are possible depending on which agent is inducing the synchronisation. In each regime, one agent induces and the other hinders the synchronisation. In particular we show that, counterintuitively, coupling can sometimes inhibit synchronisation

    Self-consistent analytic solution for the current and the access resistance in open ion channels.

    Get PDF
    A self-consistent analytic approach is introduced for the estimation of the access resistance and the current through an open ion channel for an arbitrary number of species. For an ion current flowing radially inward from infinity to the channel mouth, the Poisson-Boltzmann-Nernst-Planck equations are solved analytically in the bulk with spherical symmetry in three dimensions, by linearization. Within the channel, the Poisson-Nernst-Planck equation is solved analytically in a one-dimensional approximation. An iterative procedure is used to match the two solutions together at the channel mouth in a self-consistent way. It is shown that the currentvoltage characteristics obtained are in good quantitative agreement with experimental measurements

    Stochastic resonance in electrical circuits—II: Nonconventional stochastic resonance.

    Get PDF
    Stochastic resonance (SR), in which a periodic signal in a nonlinear system can be amplified by added noise, is discussed. The application of circuit modeling techniques to the conventional form of SR, which occurs in static bistable potentials, was considered in a companion paper. Here, the investigation of nonconventional forms of SR in part using similar electronic techniques is described. In the small-signal limit, the results are well described in terms of linear response theory. Some other phenomena of topical interest, closely related to SR, are also treate

    Stationary and Traveling Wave States of the Kuramoto Model with an Arbitrary Distribution of Frequencies and Coupling Strengths

    Get PDF
    We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.Comment: 5 pages, 1 figur

    Energy-optimal steering of transitions through a fractal basin boundary.

    Get PDF
    We study fluctuational transitions in a discrete dy- namical system having two co-existing attractors in phase space, separated by a fractal basin boundary. It is shown that transitions occur via a unique ac- cessible point on the boundary. The complicated structure of the paths inside the fractal boundary is determined by a hierarchy of homoclinic original sad- dles. By exploiting an analogy between the control problem and the concept of an optimal fluctuational path, we identify the optimal deterministic control function as being equivalent to the optimal fluctu- ational force obtained from a numerical analysis of the fluctuational transitions between two states

    Charge fluctuations and boundary conditions of biological ion channels:effect on the ionic transition rate

    Get PDF
    A self-consistent solution is derived for the Poisson-Nernst-Planck (PNP) equation, valid both inside a biological ion channel and in the adjacent bulk fluid. An iterative procedure is used to match the two solutions together at the channel mouth. Charge fluctuations at the mouth are modeled as shot noise flipping the height of the potential barrier at the selectivity site. The resultant estimates of the conductivity of the ion channel are in good agreement with Gramicidin experimental measurements and they reproduce the observed current saturation with increasing concentration

    Stochastic resonance in electrical circuits—I: Conventional stochastic resonance.

    Get PDF
    Stochastic resonance (SR), a phenomenon in which a periodic signal in a nonlinear system can be amplified by added noise, is introduced and discussed. Techniques for investigating SR using electronic circuits are described in practical terms. The physical nature of SR, and the explanation of weak-noise SR as a linear response phenomenon, are considered. Conventional SR, for systems characterized by static bistable potentials, is described together with examples of the data obtainable from the circuit models used to test the theory
    corecore