12 research outputs found

    Context conditioning in humans using commercially available immersive Virtual Reality

    Get PDF
    Despite a wealth of knowledge on how humans and nonhuman animals learn to associate meaningful events with cues in the environment, far less is known about how humans learn to associate these events with the environment itself. Progress on understanding spatiotemporal contextual processes in humans has been slow in large measure by the methodological constraint of generating and manipulating immersive spatial environments in well-controlled laboratory settings. Fortunately, immersive Virtual Reality (iVR) technology has improved appreciably and affords a relatively straightforward methodology to investigate the role of context on learning, memory, and emotion while maintaining experimental control. Here, we review context conditioning literature in humans and describe challenges to study contextual learning in humans. We then provide details for a novel context threat (fear) conditioning paradigm in humans using a commercially available VR headset and a cross-platform game engine. This paradigm resulted in the acquisition of subjective threat, threat-conditioned defensive responses, and explicit threat memory. We make the paradigm publicly available and describe obstacles and solutions to optimize future studies of context conditioning using iVR. As computer technology advances to replicate the sensation of realistic environments, there are increasing opportunities to bridge the translational gap between rodent and human research on how context modulates cognition, which may ultimately lead to more optimal treatment strategies for anxiety- and stress-related disorders

    Radial Glia in Echinoderms

    No full text
    Radial glial cells are crucial in vertebrate neural development and regeneration. It has been recently proposed that this neurogenic cell type might be older than the chordate lineage itself and might have been present in the last common deuterostome ancestor. Here, we summarize the results of recent studies on radial glia in echinoderms, a highly regenerative phylum of marine invertebrates with shared ancestry to chordates. We discuss the involvement of these cells in both homeostatic neurogenesis and post-traumatic neural regeneration, compare the features of radial glia in echinoderms and chordates to each other, and review the molecular mechanisms that control differentiation and plasticity of the echinoderm radial glia. Overall, studies on echinoderm radial glia provide a unique opportunity to understand the fundamental biology of this cell type from evolutionary and comparative perspectives
    corecore