96 research outputs found

    Repeated exposure to chlorpyrifos is associated with a dose-dependent chronic neurobehavioral deficit in adult rats

    Get PDF
    Organophosphate (OP) chemicals include commonly used pesticides and chemical warfare agents, and mechanistically they are potent inhibitors of the cholinesterase (ChE) enzyme. Epidemiological studies report long-term neuropsychiatric issues, including depression and cognitive impairments in OP-exposed individuals. Chlorpyrifos (CPF) is one of the most widely used pesticides worldwide. Multiple laboratory studies have reported on either the long-term behavioral effect of an acute high-dose CPF (30-250 mg/kg) or studied sub-chronic behavioral effects, particularly the motor and cognitive effects of repeated low-dose CPF. However, studies are lacking on chronic mood and depression-related morbidities following repeated CPF doses that would mimic occupationally relevant OP exposures. In this study, adult male rats were injected with CPF (1, 3, 5, or 10 mg/kg/d, s.c.) for 21 consecutive days. Dependent on the CPF dose, ChE activity was inhibited approximately 60-80% in the blood and about 20-50% in the hippocampus at 2-days after the end of CPF exposures. Following a 12-week washout period, a complete recovery of ChE activity was noted. However, CPF-treated rats exhibited a dose-dependent increase in signs related to anhedonia (sucrose preference test), anxiety (open-field and elevated plus-maze), and despair (forced swim test) at this stage. To the best of our knowledge, this could be the first laboratory study that demonstrates a cause-effect relationship between occupational-like CPF exposures in adult rats and the development of long-term depression-related outcomes and could provide an experimental system to study molecular mechanisms underlying environmental OP exposures and the elevated risk for chronic behavioral deficits

    Estimation of CpG Coverage in Whole Methylome Next-Generation Sequencing Studies

    Get PDF
    Background Methylation studies are a promising complement to genetic studies of DNA sequence. However, detailed prior biological knowledge is typically lacking, so methylome-wide association studies (MWAS) will be critical to detect disease relevant sites. A cost-effective approach involves the next-generation sequencing (NGS) of single-end libraries created from samples that are enriched for methylated DNA fragments. A limitation of single-end libraries is that the fragment size distribution is not observed. This hampers several aspects of the data analysis such as the calculation of enrichment measures that are based on the number of fragments covering the CpGs. Results We developed a non-parametric method that uses isolated CpGs to estimate sample-specific fragment size distributions from the empirical sequencing data. Through simulations we show that our method is highly accurate. While the traditional (extended) read count methods resulted in severely biased coverage estimates and introduces artificial inter-individual differences, through the use of the estimated fragment size distributions we could remove these biases almost entirely. Furthermore, we found correlations of 0.999 between coverage estimates obtained using fragment size distributions that were estimated with our method versus those that were “observed” in paired-end sequencing data. Conclusions We propose a non-parametric method for estimating fragment size distributions that is highly precise and can improve the analysis of cost-effective MWAS studies that sequence single-end libraries created from samples that are enriched for methylated DNA fragments

    Going Viral: How Fear, Socio-Cognitive Polarization and Problem-Solving Influence Fake News Detection and Proliferation During COVID-19 Pandemic

    Get PDF
    In times of uncertainty, people often seek out information to help alleviate fear, possibly leaving them vulnerable to false information. During the COVID-19 pandemic, we attended to a viral spread of incorrect and misleading information that compromised collective actions and public health measures to contain the spread of the disease. We investigated the influence of fear of COVID-19 on social and cognitive factors including believing in fake news, bullshit receptivity, overclaiming, and problem-solving—within two of the populations that have been severely hit by COVID-19: Italy and the United States of America. To gain a better understanding of the role of misinformation during the early height of the COVID-19 pandemic, we also investigated whether problem-solving ability and socio-cognitive polarization were associated with believing in fake news. Results showed that fear of COVID-19 is related to seeking out information about the virus and avoiding infection in the Italian and American samples, as well as a willingness to share real news (COVID and non-COVID-related) headlines in the American sample. However, fear positively correlated with bullshit receptivity, suggesting that the pandemic might have contributed to creating a situation where people were pushed toward pseudo-profound existential beliefs. Furthermore, problem-solving ability was associated with correctly discerning real or fake news, whereas socio-cognitive polarization was the strongest predictor of believing in fake news in both samples. From these results, we concluded that a construct reflecting cognitive rigidity, neglecting alternative information, and black-and-white thinking negatively predicts the ability to discern fake from real news. Such a construct extends also to reasoning processes based on thinking outside the box and considering alternative information such as problem-solving

    A systematic method for estimating individual responses to treatment with antipsychotics in CATIE

    Get PDF
    In addition to comparing drug treatment groups, the wealth of genetic and clinical data collected in the Clinical Antipsychotic Trials of Intervention Effectiveness study offers tremendous opportunities to study individual differences in response to treatment with antipsychotics. A major challenge, however, is how to estimate the individual responses to treatments. For this purpose, we propose a systematic method that condenses all information collected during the trials in an optimal, empirical fashion

    The influence of five monoamine genes on trajectories of depressive symptoms across adolescence and young adulthood

    Get PDF
    The influence of five monoamine candidate genes on depressive symptom trajectories in adolescence and young adulthood were examined in the Add Health genetic sample. Results indicated that, for all respondents, carriers of the DRD4 5-repeat allele were characterized by distinct depressive symptom trajectories across adolescence and early adulthood. Similarly, for males, individuals with the MAOA 3.5-repeat allele exhibited unique depressive symptom trajectories. Specifically, the trajectories of those with the DRD4 5-repeat allele were characterized by rising levels in the transition to adulthood, while their peers were experiencing a normative drop in depressive symptom frequency. Conversely, males with the MAOA 3.5-repeat allele were shown to experience increased distress in late adolescence. An empirical method for examining a wide array of allelic combinations was employed, and false discovery rate methods were used to control the risk of false positives due to multiple testing. Special attention was given to thoroughly interrogate the robustness of the putative genetic effects. These results demonstrate the value of combining dynamic developmental perspectives with statistical genetic methods to optimize the search for genetic influences on psychopathology across the life course

    Neurochemical Metabolomics Reveals Disruption to Sphingolipid Metabolism Following Chronic Haloperidol Administration

    Get PDF
    Haloperidol is an effective antipsychotic drug for treatment of schizophrenia, but prolonged use can lead to debilitating side effects. To better understand the effects of long-term administration, we measured global metabolic changes in mouse brain following 3 mg/kg/day haloperidol for 28 days. These conditions lead to movement-related side effects in mice akin to those observed in patients after prolonged use. Brain tissue was collected following microwave tissue fixation to arrest metabolism and extracted metabolites were assessed using both liquid and gas chromatography mass spectrometry (MS). Over 300 unique compounds were identified across MS platforms. Haloperidol was found to be present in all test samples and not in controls, indicating experimental validity. Twenty-one compounds differed significantly between test and control groups at the p < 0.05 level. Top compounds were robust to analytical method, also being identified via partial least squares discriminant analysis. Four compounds (sphinganine, N-acetylornithine, leucine and adenosine diphosphate) survived correction for multiple testing in a non-parametric analysis using false discovery rate threshold < 0.1. Pathway analysis of nominally significant compounds (p < 0.05) revealed significant findings for sphingolipid metabolism (p = 0.02) and protein biosynthesis (p = 0.03). Altered sphingolipid metabolism is suggestive of disruptions to myelin. This interpretation is supported by our observation of elevated N-acetylaspartylglutamate in the haloperidol-treated mice (p = 0.004), a marker previously associated with demyelination. This study further demonstrates the utility of murine neurochemical metabolomics as a method to advance understanding of CNS drug effects

    Deep Sequencing of Three Loci Implicated in Large-Scale Genome-Wide Association Study Smoking Meta-Analyses

    Get PDF
    Genome-wide association study meta-analyses have robustly implicated three loci that affect susceptibility for smoking: CHRNA5\CHRNA3\CHRNB4, CHRNB3\CHRNA6 and EGLN2\CYP2A6. Functional follow-up studies of these loci are needed to provide insight into biological mechanisms. However, these efforts have been hampered by a lack of knowledge about the specific causal variant(s) involved. In this study, we prioritized variants in terms of the likelihood they account for the reported associations. We employed targeted capture of the CHRNA5\CHRNA3\CHRNB4, CHRNB3\CHRNA6, and EGLN2\CYP2A6 loci and flanking regions followed by next-generation deep sequencing (mean coverage 78Ă—) to capture genomic variation in 363 individuals. We performed single locus tests to determine if any single variant accounts for the association, and examined if sets of (rare) variants that overlapped with biologically meaningful annotations account for the associations. In total, we investigated 963 variants, of which 71.1% were rare (minor allele frequency < 0.01), 6.02% were insertion/deletions, and 51.7% were catalogued in dbSNP141. The single variant results showed that no variant fully accounts for the association in any region. In the variant set results, CHRNB4 accounts for most of the signal with significant sets consisting of directly damaging variants. CHRNA6 explains most of the signal in the CHRNB3\CHRNA6 locus with significant sets indicating a regulatory role for CHRNA6. Significant sets in CYP2A6 involved directly damaging variants while the significant variant sets suggested a regulatory role for EGLN2. We found that multiple variants implicating multiple processes explain the signal. Some variants can be prioritized for functional follow-up. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: [email protected]

    Genome-wide association study of patient and clinician rated global impression severity during antipsychotic treatment

    Get PDF
    Examine the unique and congruent findings between multiple raters in a genome-wide association studies (GWAS) in the context of understanding individual differences in treatment response during antipsychotic therapy for schizophrenia

    Genotype-Based Ancestral Background Consistently Predicts Efficacy and Side Effects across Treatments in CATIE and STAR*D

    Get PDF
    Only a subset of patients will typically respond to any given prescribed drug. The time it takes clinicians to declare a treatment ineffective leaves the patient in an impaired state and at unnecessary risk for adverse drug effects. Thus, diagnostic tests robustly predicting the most effective and safe medication for each patient prior to starting pharmacotherapy would have tremendous clinical value. In this article, we evaluated the use of genetic markers to estimate ancestry as a predictive component of such diagnostic tests. We first estimated each patient’s unique mosaic of ancestral backgrounds using genome-wide SNP data collected in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) (n = 765) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) (n = 1892). Next, we performed multiple regression analyses to estimate the predictive power of these ancestral dimensions. For 136/89 treatment-outcome combinations tested in CATIE/STAR*D, results indicated 1.67/1.84 times higher median test statistics than expected under the null hypothesis assuming no predictive power (p<0.01, both samples). Thus, ancestry showed robust and pervasive correlations with drug efficacy and side effects in both CATIE and STAR*D. Comparison of the marginal predictive power of MDS ancestral dimensions and self-reported race indicated significant improvements to model fit with the inclusion of MDS dimensions, but mixed evidence for self-reported race. Knowledge of each patient’s unique mosaic of ancestral backgrounds provides a potent immediate starting point for developing algorithms identifying the most effective and safe medication for a wide variety of drug-treatment response combinations. As relatively few new psychiatric drugs are currently under development, such personalized medicine offers a promising approach toward optimizing pharmacotherapy for psychiatric conditions
    • …
    corecore