5,092 research outputs found

    The role of water in slip casting

    Get PDF
    Slips and casting are considered in terms of physical and colloidal chemistry. Casting slips are polydisperse suspensions of lyophobic particles in water, whose degree of coagulation is controlled by interaction of flocculating and deflocculating agents. Slip casting rate and viscosity are functions of temperature. Slip rheology and response to deflocculating agents varies significantly as the kinds and amounts of colloid modifiers change. Water is considered as a raw material. Various concepts of water/clay interactions and structures are discussed. Casting is a de-watering operation in which water moves from slip to cast to mold in response to a potential energy termed moisture stress. Drying is an evaporative process from a free water surface

    Statistical Mechanics of Quantum-Classical Systems with Holonomic Constraints

    Get PDF
    The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained system arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear response function of constrained quantum-classical systems contains non-trivial additional terms which are absent in the response of unconstrained systems.Comment: Submitted to Journal of Chemical Physic

    Computer-guided concentration-controlled trials in autoimmune disorders

    Get PDF
    A randomized concentration-controlled clinical trial (RCCCT) is an alternate experimental design to the standard dose-controlled study. In a RCCCT, patients are randomly assigned to predefined plasma or blood drug concentration ranges (low, medium, and high). With the caveat that concentration ranges are sufficiently separated, this design should enhance the ability to discover important concentration response relationships. FK-506, a potent and promising immunosuppressive agent for prevention and treatment of graft rejection, has shown significant clinical activity in some immune-mediated disorders. To implement the RCCCT design, a novel FK-506 intelligent dosing system (IDS) was used to guide all doses to prospectively achieve the target concentration range specified in the study protocol. Patients enrolled in these trials suffered from a variety of autoimmune disorders, including multiple sclerosis, primary biliary cirrhosis, psoriasis, autoimmune chronic active hepatitis, and nephrotic syndrome. We observed excellent predictive performance of the IDS for all patients. The accuracy (mean prediction error) of the IDS was −0.022 ng/ml and the precision (standard deviation of the prediction error) was 0.119 ng/ml. Thus, the IDS is both accurate and reproducible for autoimmune patients. We conclude that the RCCCT design, guided by an accurate and precise IDS, is an informative and cost-effective approach for evaluation of efficacy and safety of effective but highly toxic agents. © 1993 Raven Press, Ltd., New York

    Structural anisotropy and orientation-induced Casimir repulsion in fluids

    Full text link
    In this work we theoretically consider the Casimir force between two periodic arrays of nanowires (both in vacuum, and on a substrate separated by a fluid) at separations comparable to the period. Specifically, we compute the dependence of the exact Casimir force between the arrays under both lateral translations and rotations. Although typically the force between such structures is well-characterized by the Proximity Force Approximation (PFA), we find that in the present case the microstructure modulates the force in a way qualitatively inconsistent with PFA. We find instead that effective-medium theory, in which the slabs are treated as homogeneous, anisotropic dielectrics, gives a surprisingly accurate picture of the force, down to separations of half the period. This includes a situation for identical, fluid-separated slabs in which the exact force changes sign with the orientation of the wire arrays, whereas PFA predicts attraction. We discuss the possibility of detecting these effects in experiments, concluding that this effect is strong enough to make detection possible in the near future.Comment: 12 pages, 9, figure. Published version with expanded discussio

    Structural anisotropy and orientation-induced Casimir repulsion in fluids

    Full text link
    In this work we theoretically consider the Casimir force between two periodic arrays of nanowires (both in vacuum, and on a substrate separated by a fluid) at separations comparable to the period. Specifically, we compute the dependence of the exact Casimir force between the arrays under both lateral translations and rotations. Although typically the force between such structures is well-characterized by the Proximity Force Approximation (PFA), we find that in the present case the microstructure modulates the force in a way qualitatively inconsistent with PFA. We find instead that effective-medium theory, in which the slabs are treated as homogeneous, anisotropic dielectrics, gives a surprisingly accurate picture of the force, down to separations of half the period. This includes a situation for identical, fluid-separated slabs in which the exact force changes sign with the orientation of the wire arrays, whereas PFA predicts attraction. We discuss the possibility of detecting these effects in experiments, concluding that this effect is strong enough to make detection possible in the near future.Comment: 12 pages, 9, figure. Published version with expanded discussio
    corecore