370 research outputs found
Data requirements in support of the marine weather service program
Data support activities for the Marine Weather Service Program are outlined. Forecasts, cover anomolous water levels, including sea and swell, surface and breakers, and storm surge. Advisories are also provided for sea ice on the Great Lake and Cook inlet in winter, and in the Bering, Chukchi, and Beaufort Seas in summer. Attempts were made to deal with ocean currents in the Gulf Stream, areas of upwelling, and thermal structure at least down through the mixed layer
Assessing toddlers\u27 problem-solving skills using play assessment: Facilitation versus non-facilitation
Play assessment is rapidly emerging in the field of cognitive assessment in young children. One aspect of play assessment involves the identification of the types and levels of problem-solving skills children possess. Information about a child’s degree of problem-solving skills could aid school psychologists in understanding the child’s level of cognitive development. Research in the area of play assessment has not focused as much attention on problem solving as it has on other components of play. More research is needed in order to determine if a free play session or an adult-facilitated session is better for assessing a child’s problem-solving skills using play assessment. The purpose of the present study was to identify differences in problem-solving behaviors when assessment takes place in a nonfacilitated versus a structured facilitated play assessment session. Twenty children ages 18-48 months were observed playing in either a structured facilitated or a nonfacilitated setting. It was expected that differences in the level of problem-solving behaviors would exist between the two types of play sessions and that certain toys would elicit more problem-solving behaviors than others. Results indicated that there was not a significant difference in the level of problem solving exhibited by children in the facilitated or the nonfacilitated sessions. Considerations for future research are discussed
Access Services in Library and Information Science Education
Much of the focus in the library and information science field centered on the recognized traditional elements on subjects such as organizing information, information-seeking behaviors, reference resources, and collection development. These concepts were not foreign to access services professionals because our daily work involved identifying the parts of bibliographic records, creating abstracts, and understanding reference questions. However, there are many topics daily that the Master of Library and Information Science (MLIS) programs does not address. There is a disappointment amongst the authors that no course addressed the core concepts of access services that is experienced daily. If access services were addressed at all, it was an afterthought or an add-on to another topic. This chapter seeks to find a place in the LIS field for access services
An Experiment to Evaluate Skylab Earth Resources Sensors for Detection of the Gulf Stream
The author has identified the following significant results. An experiment to evaluate the Skylab earth resources package for observing ocean currents was performed in the Straits of Florida in January 1974. Data from the S190 photographic facility, S191 spectroradiometer and S192 multispectral scanner, were compared with surface observations. The anticyclonic edge of the Gulf Stream could be identified in the Skylab S190A and B photographs, but the cyclonic edge was obscured by clouds. The aircraft photographs were judged not useful for spectral analysis because vignetting caused the blue/green ratios to be dependent on the position in the photograph. The spectral measurement technique could not identify the anticyclonic front, but mass of Florida Bay water which was in the process of flowing into the Straits could be identified and classified. Monte Carlo simulations of the visible spectrum showed that the aerosol concentration could be estimated and a correction technique was devised
Ames collaborative study of cosmic-ray neutrons. 2: Low- and mid-latitude flights
Progress of the study of cosmic ray neutrons is described. Data obtained aboard flights from Hawaii at altitudes of 41,000 and 45,000 feet, and in the range of geomagnetic latitude 17 N less than or equal to lambda less than or equal to 21 N are reported. Preliminary estimates of neutron spectra are made
A Laser Ultrasound System to Non-Invasively Measure Compression Waves in Granular Ice Mixes
Accurate knowledge of snow mechanical properties, including Young\u27s modulus, shear modulus, Poisson\u27s ratio, and density, is critical to many areas of snow science and to snow-related engineering problems. To facilitate the assessment of these properties, an innovative non-contacting laser ultrasound system (LUS) has been developed. This system acquires ultrasound waveform data at frequencies ranging from tens to hundreds of kHz in a controlled cold-lab environment. Two different LUS devices were compared in this study to determine which recorded more robust ultrasound in granular ice mix samples. We validated the ultrasound observations with poro-elastic traveltime modeling based on physical and empirical constitutive relationships, comparison to and replication of previous studies, and the use of other accredited snow property measurement systems, i.e., the SnowMicroPen. For ice mixes, we determined that the PSV-400 Scanning Vibrometer (Polytec GmbH) produces higher quality ultrasonic wavefield observations (i.e. has a better signal-to-noise ratio) than the VibroFlex Fiber Vibrometer (Polytec GmbH) in the lab conditions tested here. Using the PSV-400, we then demonstrated the utility of this new LUS to study the relationship between snow compression-wave speed and density during snow compaction experiments
A laser ultrasound system to non-invasively measure compression waves in granular ice mixes
publishedVersio
CRISPR/Cas9-based editing of a sensitive transcriptional regulatory element to achieve cell type-specific knockdown of the NEMO scaffold protein
The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-κB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter D) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support activation of canonical NF-κB signaling in response to treatment with tumor necrosis factor. Nevertheless, noncanonical NF-κB signaling is intact in these NEMO-deficient cells. Expression of ectopic wildtype NEMO, but not certain human NEMO disease mutants, in the edited cells restores downstream NF-κB signaling in response to tumor necrosis factor. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter D) in the human SNU423 liver cancer cell line. Thus, we have created a strategy for selectively eliminating cell typespecific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-κB signaling are discussed.Published versio
Ames collaborative study of cosmic ray neutrons
The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude
- …