36 research outputs found

    Condensation and Evaporation of Mutually Repelling Particles :Steady states and limit cycles

    Full text link
    We study condensation and evaporation of particles which repel each other, using a simple set of rules on a square lattice. Different results are obtained for a mobile and an immobile surface layer.A two point limit cycle is observed for high temperature and low pressure in both cases. Here the coverage oscillates between a high and a low value without ever reaching a steady state. The results for the immobile case depend in addition on the initial coverage.Comment: 8 pages, 3 figure

    Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough

    Get PDF
    BACKGROUND: Tuberculosis is a highly infectious disease that is spread from person to person by infected aerosols emitted by patients with respiratory forms of the disease. We describe a novel device that utilizes immunosensor and bio-optical technology to detect M. tuberculosis antigen (Ag85B) in cough and demonstrate its use under field conditions during a pilot study in an area of high TB incidence. METHODS: The TB Breathalyzer device (Rapid Biosensor Systems Ltd) was field tested in the outpatient clinic of Adama Hospital, Ethiopia. Adults seeking diagnosis for respiratory complaints were tested. Following nebulization with 0.9% saline patients were asked to cough into a disposable collection device where cough aerosols were deposited. Devices were then inserted into a portable instrument to assess whether antigen was present in the sample. Demographic and clinical data were recorded and all patients were subjected to chest radiogram and examination of sputum by Ziehl-Nielsen microscopy. In the absence of culture treatment decisions were based on smear microscopy, chest x-ray and clinical assessment. Breathalyzer testing was undertaken by a separate physician to triage and diagnostic assessment. RESULTS: Sixty individuals were each subjected to a breathalyzer test. The procedure was well tolerated and for each patient the testing was completed in less than 10 min. Positive breath test results were recorded for 29 (48%) patients. Of 31 patients with a diagnosis of tuberculosis 23 (74%; 95% CI 55-87) were found positive for antigen in their breath and 20 (64%; 95% CI 45-80) were smear positive for acid fast bacilli in their sputum. Six patients provided apparent false positive breathalyzer results that did not correlate with a diagnosis of tuberculosis. CONCLUSIONS: We propose that the breathalyzer device described warrants further investigation as a tool for studying exhalation of M. tuberculosis. The portability, simplicity of use and speed of the test device suggest it may also find use as a tool to aid early identification of infectious cases. We recommend studies be undertaken to determine the diagnostic sensitivity and specificity of the device when compared to microbiological and clinical indicators of tuberculosis disease

    WR1065 mitigates AZT-ddI-induced mutagenesis and inhibits viral replication

    Get PDF
    The success of nucleoside reverse transcriptase inhibitors (NRTIs) in treating HIV-1 infection and reducing mother-to-child transmission of the virus during pregnancy is accompanied by evidence that NRTIs cause long-term health risks for cancer and mitochondrial disease. Thus, agents that mitigate toxicities of the current combination drug therapies are needed. Previous work had shown that the NRTI-drug pair zidovudine (AZT)–didanosine (ddI) was highly cytotoxic and mutagenic; thus, we conducted preliminary studies to investigate the ability of the active moiety of amifostine, WR1065, to protect against the deleterious effects of this NRTI-drug pair. In TK6 cells exposed to 100 μM AZT-ddI (equimolar) for 3 days with or without 150 μM WR1065, WR1065 enhanced long-term cell survival and significantly reduced AZT-ddI-induced mutations. Follow-up studies were conducted to determine if coexposure to AZT and WR1065 abrogated the antiretroviral efficacy of AZT. In human T-cell blasts infected with HIV-1 in culture, inhibition of p24 protein production was observed in cells treated with 10 μM AZT in the absence or presence of 5–1,000 μM WR1065. Surprisingly, WR1065 alone exhibited dose-related inhibition of HIV-1 p24 protein production. WR1065 also had antiviral efficacy against three species of adenovirus and influenza A and B. Intracellular levels of unbound WR1065 were measured following in vitro/in vivo drug exposure. These pilot study results indicate that WR1065, at low intracellular levels, has cytoprotective and antimutagenic activities against the most mutagenic pair of NRTIs and has broad spectrum anti-viral effects. These findings suggest that the activities have a possible common mode of action that merits further investigation
    corecore