62 research outputs found

    Two Salt Bridges Differentially Contribute to Maintenance of CFTR Channel Function

    Get PDF

    Early Detection of Cystic Fibrosis Acute Pulmonary Exacerbations by Exhaled Breath Condensate Metabolomics

    Get PDF
    The most common cause of death in cystic fibrosis (CF) patients is progressive lung function decline, which is punctuated by acute pulmonary exacerbations (APEs). A major challenge is to discover biomarkers for detecting an oncoming APE and allow for pre-emptive clinical interventions. Metabolic profiling of exhaled breath condensate (EBC) samples collected from CF patients before, during, and after APEs and under stable conditions (n = 210) was performed using ultraperformance liquid chromatography (UPLC) coupled to Orbitrap mass spectrometry (MS). Negative ion mode MS data showed that classification between metabolic profiles from "pre-APE" (pending APE before the CF patient had any signs of illness) and stable CF samples was possible with good sensitivities (85.7 and 89.5%), specificities (88.4 and 84.1%), and accuracies (87.7 and 85.7%) for pediatric and adult patients, respectively. Improved classification performance was achieved by combining positive with negative ion mode data. Discriminant metabolites included two potential biomarkers identified in a previous pilot study: Lactic acid and 4-hydroxycyclohexylcarboxylic acid. Some of the discriminant metabolites had microbial origins, indicating a possible role of bacterial metabolism in APE progression. The results show promise for detecting an oncoming APE using EBC metabolites, thus permitting early intervention to abort such an event.Fil: Zang, Xiaoling. Georgia Institute of Techology; Estados UnidosFil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Gaul, David A.. Georgia Institute of Techology; Estados UnidosFil: McCarty, Nael A.. University of Emory; Estados UnidosFil: Stecenko, Arlene. University of Emory; Estados UnidosFil: Fernández, Facundo M.. Georgia Institute of Techology; Estados Unido

    Comparing ATPase activity of ATP-binding cassette subfamily C member 4, lamprey CFTR, and human CFTR using an antimony-phosphomolybdate assay

    Get PDF
    Introduction: ATP-binding cassette (ABC) transporters use the hydrolysis of ATP to power the active transport of molecules, but paradoxically the cystic fibrosis transmembrane regulator (CFTR, ABCC7) forms an ion channel. We previously showed that ATP-binding cassette subfamily C member 4 (ABCC4) is the closest mammalian paralog to CFTR, compared to other ABC transporters. In addition, Lamprey CFTR (Lp-CFTR) is the oldest known CFTR ortholog and has unique structural and functional features compared to human CFTR (hCFTR). The availability of these evolutionarily distant orthologs gives us the opportunity to study the changes in ATPase activity that may be related to their disparate functions.Methods: We utilized the baculovirus expression system with Sf9 insect cells and made use of the highly sensitive antimony-phosphomolybdate assay for testing the ATPase activity of human ABCC4 (hABCC4), Lp-CFTR, and hCFTR under similar experimental conditions. This assay measures the production of inorganic phosphate (Pi) in the nanomolar range.Results: Crude plasma membranes were purified, and protein concentration, determined semi-quantitatively, of hABCC4, Lp-CFTR, and hCFTR ranged from 0.01 to 0.36 μg/μL. No significant difference in expression level was found although hABCC4 trended toward the highest level. hABCC4 was activated by ATP with the equilibrium constant (Kd) 0.55 ± 0.28 mM (n = 8). Estimated maximum ATPase rate (Vmax) for hABCC4 was about 0.2 nmol/μg/min when the protein was activated with 1 mM ATP at 37°C (n = 7). Estimated maximum ATPase rate for PKA-phosphorylated Lp-CFTR reached about half of hCFTR levels in the same conditions. Vmax for both Lp-CFTR and hCFTR were significantly increased in high PKA conditions compared to low PKA conditions. Maximum intrinsic ATPase rate of hABCC4 in the absence of substrate was twice that of hCFTR when activated in 1 mM ATP.Conclusion: The findings here suggest that while both ABCC4 and hCFTR bear one consensus and one degenerate ATPase site, the hCFTR exhibited a reduced intrinsic ATPase activity. In addition, ATPase activity in the CFTR lineage increased from Lp-CFTR to hCFTR. Finally, the studies pave the way to purify hABCC4, Lp-CFTR, and hCFTR from Sf9 cells for their structural investigation, including by cryo-EM, and for studies of evolution in the ABC transporter superfamily

    Identification of a peptide inhibitor of CIC channels

    Get PDF
    Issued as final reportAmerican Heart Associatio

    Peptide inhibitors probe structure and function in chloride channels

    Get PDF
    Issued as final reportCystic Fibrosis Foundatio

    Functional Consequences of GPCR Heterodimerization: GPCRs as Allosteric Modulators

    No full text
    G Protein Coupled Receptors (GPCRs) represent the largest family of membrane proteins in the human genome, are the targets of approximately 25% of all marketed pharmaceuticals, and the focus of intensive research worldwide given that this superfamily of receptors is as varied in function as it is ubiquitously expressed among all cell types. Increasing evidence has shown that the classical two part model of GPCR signaling (one GPCR, one type of heterotrimeric G protein) is grossly oversimplified as many GPCRs can couple to more than one type of G protein, each subunit of the heterotrimeric G protein can activate different downstream effectors, and, surprisingly, other GPCRs can affect receptor behavior in G protein-independent ways. The concept of GPCR heterodimerization, or the physical association of two different types of GPCRs, presents an unexpected mechanism for GPCR regulation and function, and provides a novel target for pharmaceuticals. Here we present a synopsis of the functional consequences of GPCR heterodimerization in both in vitro and in vivo studies, focusing on the concept of GPCRs as allosteric modulators. Typically, an allosteric modulator is a ligand or molecule that alters a receptor’s innate functional properties, but here we propose that in the case of GPCR heterodimers, it is the physical coupling of two receptors that leads to changes in cognate receptor signaling
    • …
    corecore