19,484 research outputs found

    Clustering of equine grass sickness cases in the United Kingdom: a study considering the effect of position-dependent reporting on the space-time K-function

    Get PDF
    Equine grass sickness (EGS) is a largely fatal, pasture-associated dysautonomia. Although the aetiology of this disease is unknown, there is increasing evidence that Clostridium botulinum type C plays an important role in this condition. The disease is widespread in the United Kingdom, with the highest incidence believed to occur in Scotland. EGS also shows strong seasonal variation (most cases are reported between April and July). Data from histologically confirmed cases of EGS from England and Wales in 1999 and 2000 were collected from UK veterinary diagnostic centres. The data did not represent a complete census of cases, and the proportion of all cases reported to the centres would have varied in space and, independently, in time. We consider the variable reporting of this condition and the appropriateness of the space–time K-function when exploring the spatial-temporal properties of a ‘thinned’ point process. We conclude that such position-dependent under-reporting of EGS does not invalidate the Monte Carlo test for space–time interaction, and find strong evidence for space–time clustering of EGS cases (P<0.001). This may be attributed to contagious or other spatially and temporally localized processes such as local climate and/or pasture management practices

    Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering

    Get PDF
    We investigate the properties of the optical model wave function for light heavy-ion systems where absorption is incomplete, such as α+40\alpha + ^{40}Ca and α+16\alpha + ^{16}O around 30 MeV incident energy. Strong focusing effects are predicted to occur well inside the nucleus, where the probability density can reach values much higher than that of the incident wave. This focusing is shown to be correlated with the presence at back angles of a strong enhancement in the elastic cross section, the so-called ALAS (anomalous large angle scattering) phenomenon; this is substantiated by calculations of the quantum probability flux and of classical trajectories. To clarify this mechanism, we decompose the scattering wave function and the associated probability flux into their barrier and internal wave contributions within a fully quantal calculation. Finally, a calculation of the divergence of the quantum flux shows that when absorption is incomplete, the focal region gives a sizeable contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The figures are only available via anonynous FTP on ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat

    Investigating Heating and Cooling in the BCS & B55 Cluster Samples

    Full text link
    We study clusters in the BCS cluster sample which are observed by Chandra and are more distant than redshift, z>0.1. We select from this subsample the clusters which have both a short central cooling time and a central temperature drop, and also those with a central radio source. Six of the clusters have clear bubbles near the centre. We calculate the heating by these bubbles and express it as the ratio r_heat/r_cool=1.34+/-0.20. This result is used to calculate the average size of bubbles expected in all clusters with central radio sources. In three cases the predicted bubble sizes approximately match the observed radio lobe dimensions. We combine this cluster sample with the B55 sample studied in earlier work to increase the total sample size and redshift range. This extended sample contains 71 clusters in the redshift range 0<z<0.4. The average distance out to which the bubbles offset the X-ray cooling in the combined sample is at least r_heat/r_cool=0.92+/-0.11. The distribution of central cooling times for the combined sample shows no clusters with clear bubbles and t_cool>1.2Gyr. An investigation of the evolution of cluster parameters within the redshift range of the combined samples does not show any clear variation with redshift.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    Full Optical Potential for the Electron-Hydrogen Entrance Channel

    Get PDF
    Differential and total elastic and total reaction cross sections are calculated for electron-hydrogen scattering at 30, 100, and 400 eV using an ab initio optical potential that treats bound and continuum nonelastic channels in the distorted-wave Born approximation. Multichannel and partial wave expansions are carried out to numerical convergence. Convergence criteria and quadratures for the continuum-energy integration are chosen for 1% overall accuracy. Results are compared with experiment and less detailed calculations

    Effect of Second-Order Exchange in Electron-Hydrogen Scattering

    Get PDF
    The electron-hydrogen scattering problem has been a nemesis to theoretical atomic physicists due to the fact that even the most sophisticated of theoretical calculations, both perturbative and nonperturbative, do not agree with experiment. The current opinion is that the perturbative approach cannot be used for this problem since recent second-order calculations are not in agreement with the experimental data and higher-order calculations are deemed impractical However, these second-order calculations neglected second-order exchange. We have now added exchange to the second-order calculation and have found that the primary source of disagreement between experiment and theory for intermediate energies is attributable not to higher-order terms but to second-order exchang

    Coupled-Channel Optical Calculation of Electron-Hydrogen Scattering: The Distorted-Wave Optical Potential

    Get PDF
    The coupled-channel optical method solves a set of coupled momentum-space integral equations for a finite set of reaction channels. The remaining channels, including the target continuum, are described by the polarization potential operator, which formally depends on the full three-body state vectors for these channels. The distorted-wave optical potential makes the distorted-wave Born approximation for these state vectors, using exact target states. No other approximation is made. Calculations and comparison with experiment are reported for total ionization cross sections and asymmetries, total excitation cross sections, entrance-channel phenomena, and the coupled 1s,2s,2p channels, at a range of energies

    Screening and diagnostic assessment of neurodevelopmental disorders in a male prison

    Get PDF
    Purpose The purpose of this paper is to identify neurodevelopmental disorders and difficulties (NDD) in a male prison. The study used standardised tools to carry out screening and diagnostic assessment of the attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability (ID). Design/methodology/approach The ADHD self-report scale, 20-item autism quotient and the Learning Disability Screening Questionnaire were used to screen 240 male prisoners. Prisoners who screened positive on one or more of these scales or self-reported a diagnosis of ADHD, ASD or ID were further assessed using the diagnostic interview for ADHD in adults, adapted Autism Diagnostic Observation Schedule and the Quick Test. Findings Of the 87 prisoners who screened positive for NDD and were further assessed, 70 met the study’s diagnostic criteria for ADHD, ASD or ID. Most of those with NDD (51 per cent) had previously gone unrecognised and a high proportion (51 per cent) were identified through staff- or self-referral to the study. Originality/value The study demonstrated that improving awareness and providing access to skilled, standardised assessment within a male prison can result in increased recognition and identification of NDD

    Long-range behavior of the optical potential for the elastic scattering of charged composite particles

    Get PDF
    The asymptotic behavior of the optical potential, describing elastic scattering of a charged particle α\alpha off a bound state of two charged, or one charged and one neutral, particles at small momentum transfer Δα\Delta_{\alpha} or equivalently at large intercluster distance ρα\rho_{\alpha}, is investigated within the framework of the exact three-body theory. For the three-charged-particle Green function that occurs in the exact expression for the optical potential, a recently derived expression, which is appropriate for the asymptotic region under consideration, is used. We find that for arbitrary values of the energy parameter the non-static part of the optical potential behaves for Δα0\Delta_{\alpha} \rightarrow 0 as C1Δα+o(Δα)C_{1}\Delta_{\alpha} + o\,(\Delta_{\alpha}). From this we derive for the Fourier transform of its on-shell restriction for ρα\rho_{\alpha} \rightarrow \infty the behavior a/2ρα4+o(1/ρα4)-a/2\rho_{\alpha}^4 + o\,(1/\rho_{\alpha}^4), i.e., dipole or quadrupole terms do not occur in the coordinate-space asymptotics. This result corroborates the standard one, which is obtained by perturbative methods. The general, energy-dependent expression for the dynamic polarisability C1C_{1} is derived; on the energy shell it reduces to the conventional polarisability aa which is independent of the energy. We emphasize that the present derivation is {\em non-perturbative}, i.e., it does not make use of adiabatic or similar approximations, and is valid for energies {\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte
    corecore