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Coupled-channel optical calculation of electron-hydrogen scattering:
The distorted-wave optical potential
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D. H. Madison
Department of Physics, University of Missouri Rol-la, Rolla, Missouri 6540I

I. E. McCarthy
Institute for Atomic Studies, The Flinders University ofSouth Australia, Bedford Park, South Australia 5042, Australia

(Received 17 January 1990)

The coupled-channel optical method solves a set of coupled momentum-space integral equations

for a finite set of reaction channels. The remaining channels, including the target continuum, are

described by the polarization potential operator, which formally depends on the full three-body

state vectors for these channels. The distorted-wave optical potential makes the distorted-wave

Born approximation for these state vectors, using exact target states. No other approximation is

made. Calculations and comparison with experiment are reported for total ionization cross sections

and asymmetries, total excitation cross sections, entrance-channel phenomena, and the coupled

ls, 2s, 2p channels, at a range of energies.

I. INTRODUCTION

This is the third in a series of papers on the
momentum-space coupled-channel optical (CCO) method
for electron-atom scattering. The first' dealt with the
coupled equations for a one-electron target. The second
treated many-electron targets and the distorted-wave rep-
resentation, which enables charged targets to be included
and reduces the computational labor.

The CCO method is a fully microscopic, nonperturba-
tive method for calculating electron-atom scattering, in
which channels in a finite set (P space) are explicitly cou-
pled and the remaining channels (Q space), including the
target continuum, are included in a complex, nonlocal
polarization potential. Up to now it has been necessary
to make analytic approximations to the excitation ma-
trix elements in the polarization potential and to make
further approximations ' for computational feasibility.
Here we use exact target eigenstates for hydrogen in both
the bound and continuum cases. The only approximation
is that the three-body wave functions for excitations into
Q space are approximated by the product of the corre-
sponding target eigenstate and an elastic scattering func-
tion (distorted wave) calculated in the appropriate poten-
tial. A preliminary calculation of elastic scattering in
this approximation made the additional approximation of
omitting exchange terms from the polarization potential.
Here exchange is fully treated.

Other nonperturbative calculations of electron-
hydrogen scattering at intermediate energies include the
intermediate-energy R-matrix method (IERM), in
which the numerical solution of the three-body
Schrodinger equation in a finite, spherical region is
matched to two-body external boundary conditions and

the resulting T-matrix elements are averaged over pseu-
doresonances. This is also a fully microscopic method.
The unitarized eikonal-Born series (UEBS) is an essen-
tially nonperturbative semiclassical method. The calcula-
tion that most resembles the present one is the pseudo-
state method ' (PS), in which Q space is represented by
a set of orthogonal and normalized square-integrable
pseudostate functions with low values of orbital angular
momentum. These functions play the same part in the
computation as discrete target states, so that the resulting
pseudoproblem can be solved to numerical convergence.
The parameters of the pseudoproblem are chosen in vari-
ous ways such as diagonalizing the atomic Hamiltonian
or requiring the pseudostate basis set to reproduce some
known result such as the atomic polarizability or the
second Born amplitude.

A perturbative method that is directly related to the
present calculation is the exact second-order distorted-
wave approximation of Madison, Hughes, and McGin-
ness. " In that work the three-body wave functions
occurring in the sum over intermediate states in the
second-order T matrix are approximated as a product of
target wave functions and a distorted wave. The impor-
tant advancement represented by that work, and used
here, is the exact integration over the target continuum.
With the addition of exchange terms' the matrix ele-
ments of that approximation are the driving terms of the
integral equations of the CCO method in the distorted-
wave representation.

The a priori justification of the distorted-wave optical
potential depends on the validity of the distorted-wave
Born approximation (DWBA) for describing experimen-
tal cross sections. It has had success in describing
discrete excitations' and recent detailed comparisons
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with (e, 2e) data' have shown that it gives a good ac-
count of the large differential cross sections that are par-
ticularly relevant to the kinematic integration space of
the polarization potential. Nevertheless, like all present
scattering methods, it does not satisfy the three-body
boundary conditions for charged particles. ' Formally a
three-body ansatz such as that of Brauner, Briggs, and
Klar, ' which is very successful in describing (e, 2e) data,
can be included in the distorted-wave optical potential.
The computation is very diScult.

Section II gives a full formal derivation of the CCO
method. Section III describes the distorted-wave (DW)
optical potential and Sec. IV discusses its numerical im-
plernentation. In Sec. V we form some a priori ideas of
the validity of the DW optical potential at different ener-
gies by calculating total ionization cross sections and
asymmetries and total excitation cross sections in the
weak-coupling approximation and comparing them with
experiment. Section VI discusses entrance-channel phe-
nomena in which P space consists only of the 1s channel.
Section VII discusses scattering in the 1s,2s, 2p P space.

II. FORMAL DERIVATION
OF THE CCO METHOD

The total Hamiltonian for the electron-hydrogen prob-
lern is

& l
f Vs fj &

=
& 1

/
v 3 [1 + ( —I )sP„]

fj &

+5; v, + Q (1—S5;, )(s;+el, —E)
k

where 5 is the total electron spin and P„ is the space-
exchange operator. This form ensures uniqueness and
stability of off-shell solutions of the integral equation cor-
responding to (7) and enables the electron-hydrogen prob-
lem to be treated by the formalism of multichannel two-
body scattering theory. For nonrelativistic scattering S is
a good quantum number. We will drop it from the for-
rnalism until we need it.

The space of target states is divided into two by the
projection operators P and Q, defined by

p= g Ij&&j,
jEP

(9)

P+Q=l . (lo)

Substituting Q ~

4o+ '
& from the corresponding Q-

projected equation we obtain

P(E" I —~ —V —V'~'}Pl+',+'& =O, (12)

where the polarization potential V'~' is defined by

Using these definitions we obtain the P-projected form of
the Schrodinger equation (7):

P (E'+' E —V)P—I'Po+' & =Pvgl'Po" & .

where

E =IC) +E2+v2,
V=v, +v3 . (3)

pv'~'p~e, "'&=p vg
1

QV Pl~oI+'&.
Q (E'+' —K —V)Q

(13}

The kinetic energies of electrons 1 and 2 are K, and K2.
The corresponding electron-nucleus potentials are v

&
and

v2. The electron-electron potential is v 3.
Channel states 4„are defined as

The integral equation corresponding to (12) is

~e',+'& = ~e, &+ P( V+ V'~')P~%, +'& .P(E"'—X)P

(E„—Z}~C„&=O,

l~„&=IJI„&,
where j denotes a target eigenstate

(4)

(5)

(14)

We now define the P-projected T-matrix element and
rearrange it using the identity obtained from (11) and
(12):

(e, —lt, —v, )~j&=o (6)

and k„ is the momentum of the projectile electron. In the
case of ionized target states, j and p constitute a discrete
notation for the continuum which is formally convenient
but will be replaced when necessary by explicit continu-
urn notation.

The Schrodinger equation for the whole problem is

pvg~e,'+'& =pv'~'p~e, "'& .

The P-projected T-matrix element is

& e„~proc, &
=

& e„[pv~e,'+'&

=
& c „(pv(p+ g}(e,"'&

=&@„(p(v+v'~'}p~e,'+'& .

(15)

(16}

(17)

(EI-+' —sc) ~e,'-'(I, ) &
= v~e,'+-'(k, ) &,

where 0'0—'(ko) describes the scattering of a projectile of
momentum ko incident on the ground state of the target.
Superscripts (+) indicate ingoing or outgoing spherical-
wave boundary conditions, respectively.

Antisymmetry' is introduced into the formalism by re-
placing Vin (7}with Vs, defined by

We obtain the coupled Lippman-Schwinger equations
for the P-projected T-matrix elements by substituting the
form (14) for ~%&+

'
& in (17) and using definition (16):

& ~„IP7.1~.&
=

& ~„IP(v+ v'~') l~, &

+ y & e„~p( v+ v'~')p~@„&
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We now make the continuum notation explicit in (18) by
using definition (5) of I4„) and reintroduce the spin sub-

script 5:
&«Irslok, ) =&ki vs+ vp lok, &

+ g fd'q&kilvs+vp'Ijq)
jEP

1

E(+) ~ lq2
J 2

Together with the P-projected integral equations (18),
this constitutes a rearrangement of the electron-hydrogen
problem in which the target continuum can be made for-
mally explicit. We have not solved the problem of
course, since the 4' ' have not been found.

The CCO method removes the difficulties of solving
the problem to Q space. The three-body wave functions
of Q space are of three kinds, which we approximate as
follows, writing the target eigenstate first.

x&qj ITs oko&, icP . (19) (1) Two electrons in the continuum:

This is the set of coupled Lippman-Schwinger equations
that is solved' for the P-space T-matrix elements. (21a)

III. THE DISTORTED-WAVE
POLARIZATION POTENTIAL

The matrix elements of the formal polarization poten-
tial (13}are written in terms of explicit excitation ampli-
tudes for states in Q space by inserting the complete set

' of exact eigenstates of the three-body problem:

&q'~l~p'Ijq&= g &q'ilvslq"„'&
vGQ

(20)

(2) One electron in a bound state p:

Iq', -'& = lp &y,'-'(k') &, (2 lb)

(3) Three-body bound state: omitted.

We do not believe the single three-body bound state will

affect the calculation.
Using approximation (21) for the three-body states we

write the distorted-wave polarization potential as the sum
of two terms, one each for discrete and continuum target
states:

&q'il Vp'Ijq&= & —,'&q'ilvslp & fd'k'Ix,' '(k')& &y' '(k')I &plvsljq&
a&Q

E'+' —c —,
k'

+f d'k —,'&q'ilv, lx' '(k}& fd'k'ly, '(k'}&,+, » &yI, '(k')I &y' '(k)lv, ljq& .E'+' —
—,'(k' +k )

(22)

The factor —,
' in the discrete sum comes from the normali-

zation of the 2 X 2 determinants constituting the antisym-
metrized wave functions. The extra factor —,

' in the con-
tinuum integral ensures that the states are not double
counted in the double integration over the momenta of
indistinguishable electrons.

The distorted waves y' '(k'), y', '(k') represent elec-
trons scattered elastically from the potential U, which is
different in different cases.

(1) Two electrons in the continuum:

IV. NUMERICAL CALCULATION
OF THE POLARIZATION POTENTIAL

The partial-wave components of the polarization po-
tential are added to those of the first-order potential to
give the partial-wave expansion of the coupled integral
equations (19):

V-,",,-",(k, k, ) = V-,",,-",(k, k, )

+ g f dqq VII,LL,(k, q)
I'L'

U=u&,

(2) One electron in a bound state p:

(23a) (JS)X ~+ ~ 2
Tl.lL L (q, ko ) .

E E, I
—q

(24)
U = g &pl vip), (23b)

where m is the projection quantum number of the state p.
The general notation U will be useful in the next section.
Definitions (23}are the ones that work best in the DWBA
for inelastic scattering' and ionization. '

For economy of notation we have represented each target
state (nonuniquely) by its orbital angular momentum l.
The corresponding continuum partial-wave angular
momentum is L. The total angular momentum is J. Full
notation is given in Ref. 1 together with the method of
performing the integration over q.
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For the computation we use the coordinate-space rep-
resentation of the wave functions and potentials. The
coordinate-space representation of the quantities in large
parentheses in (22) is the Green's function for the poten-
tial U projected onto the continuum:

6"(E—e, r, r'}=f d k'(r~y' '(k'} )

x E'+' —~ —-'k'
2

(2&)

G(E —e;r, r')= ggJ(E e;r, r')Y—(r)Y&' (r'),
jm

(26)

where

The partial-wave expansion of the full Green's function,
which includes both bound and continuum states of the
potential U, is

g (E —e;r, r')= (—rr') ' dk'u (k', r)

x (+) u, (k', r')E(+'-c.--'k' '
2

+ g (rr') 'u „(r)E(+ ) u,„(r'),

(31)

where ui(k, r) is the partial wave of y' '(k, r) and uJ„(r)
is the radial wave function of the bound state jn of the
potential U.

To obtain the continuum projection of the partial-wave
Green's function we subtract the bound-state terms of
(31) from (27):

g"(E—s;r, r')= K'(—rr') 'uJ(K, r& )hJ(K, r
&)

I'7' Q n 1

g (E e;r, r')=— K'(rr—') 'u (K, r&. )hJ(K, r& ), (27)
1

X E' ' —~ —~jn
uJ„(r') . (32)

—'K =E —c, ,2
(28)

uj is the physical partial wave and h is asymptotically a
spherical outgoing wave, both calculated for the potential
U. Their external forms are

u (K, r)=F (. K, r)+C [G (K, r)+iFJ(K, r)), (29)

h (K, r)=G (K., r)+iF (K, r. ), (30)

where F and 6 are the regular and irregular Coulomb
functions for the appropriate charge and C is a complex
matching constant related to the phase shift.

We find an alternative form for g, (r, r') from the
partial-wave expansion of the spectral representation (25)
of the full Green's function:

For case 1 of (23), U is the Coulomb potential of the nu-
cleus. There are an infinite number of bound states n to
be subtracted in (32) but the sum over n is rapidly conver-
gent. For case 2 the average potentials for hydrogen do
not support bound states.

The polarization potential consists of a direct term DD
and three exchange terms ED, DE, and EE, where the
first (last) D or E refers to the direct (exchange) nature of
the first (last) excitation matrix element in (20). The
partial-wave polarization potential corresponding to (22)
is the sum of four terms with different exchange charac-
ters:

P (JS) P ( J~DD) + P ( J~EE) + ( 1 )S( P ( J~DE) + V ( J~ED) )llLL llLL /ILL llLL llLL

(33)

We illustrate the full partial-wave expansion only for the
DD case (the others are obtained by the corresponding
space exchanges):

V-' '(q', q) = — i (
—1)'+'(q'q)2

11LL

L k j I.' k I j J L'''o oo o oojL'A. l,

L k j L A. I j J L

L J

X g f dr" U (q'r)u((r")v&-(r, r")u L.(r") '

u&Q '

XgJl"(E —e~;r, r') f dr'"u&L. (r"')v&(r"', r')u((r"')UL(qr')

+f dk fdr" Uz(q'r)u((r")v&(r, r") (ukL, r")

XgJ'."(E—,' k; r, r ') f dr"'uL. (k, r'")vi (r—"',r')u((r"') UL (qr')
(34)
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TABLE I. Total ionization {oi), excitation (o.,„), and reaction (o.&) cross sections (mao) for
electron-hydrogen scattering calculated in the 1-channel weak-coupling approximation (CCO) from the
DW optical potential and compared with semiempirical data (Ref. 18) (expt) whose errors are about
10%. CCO1 and CCO3 are weak-coupling calculations with 1 and 3 channels in P space, respectively.

E (eV)

30
50

100
200
400

CCO

1.16
1.08
0.77
0.47
0.25

Expt.

0.61
0.77
0.715
0.48
0.29

CCO1

1.71
1.40
0.98
0.63
0.37

oex
CCO3

1.63
1.35
0.97
0.63
0.37

Expt.

1.37
1.32
1.04
0.70
0.41

CCO

2.79
2.44
1.74
1.10
0.62

Expt.

1.98
2.09
1.76
1.20
0.697

For DE we interchange I and L in the angular-
momentum coefticients and r"' and r' in the correspond-
ing radial wave functions. For ED we perform a similar
interchange for I and L and for EE we make both ex-
changes. Here the symbols in large parentheses and curly
brackets are Wigner 3j and 6j symbols, respectively, the
symbol u represents a radial wave function in obvious no-
tation, and E means (2L +1)'~ . The A, multipole of the
Coulomb potential is uz(r, r'). The radial bound-state
functions ui(r) are defined in terms of the target eigen-
functions (r~p ) by

(r~p ) =r 'u, (r) r( (r) (35)

TABLE II. The total electron-hydrogen ionization asym-
metry AI calculated by CCO in the weak-coupling approxima-
tion compared with the experimental data of Fletcher et al.
(Ref. 19). The full width at half maximum of the incident ener-

gy distribution is also given. The error in the last significant
figures of A& is given in parentheses. The calculation is done at
the central energy for each case.

E (eV) FWHM (eV) A& (expt. )' AI (CCO)

and ui(r) is positive for small r.
Convergence in the discrete Q-space sum and in the

Green's function (32) is achieved by including bound
states up to n =6,L ' =3. The continuum states need par-
tial waves up to L'= 15.

U. WEAK COUPLING: IONIZATION
AND EXCITATION

Before testing the whole CCO calculation it will be in-
teresting to see how well the DW polarization potential
obeys some of the necessary constraints given by the
weak-coupling approximation. ' In this approximation
the total reaction cross section from a 1-channel calcula-
tion with the polarization potential for part of Q space is
the total cross section for the excitation of that part of Q
space. The weak-coupling approximation in the case of
the DW polarization potential may be understood as the
DWBA with the entrance-channel distorted wave calcu-
lated in a spin-dependent, complex, nonlocal optical po-
tential.

)pl

I

th
(4

U

0
V) ip0

C0

Cr
Lh

e lp~
Lh0
L

14.1
15.0
17.0
19.0
22.2
27.0
30.3
34.0
42.0
57.0
77.0

107.0
147.0
197.0

'Reference 19.

2.3
3.2
3.2
3.2
2.5
2.7
2.5
3.2
3.2
3.2
3.2
3.2
3.2
3.2

0.446(34)
0.529(27)
0.430(26)
0.449(24)
0.436(5)
0.369(5)
0.324(9)
0.307(18)
0.320(11)
0.233(13)
0.184(31)
0.143(11)
0.118(12)
0.071(14)

0.431
0.427
0.415
0.402
0.382
0.351
0.334
0.313
0.278
0.229
0.188
0.149
0.118
0.094

a
C
L

10-2

C3

l l

60 120
5t:atter ing ong l e (deg )

E80

FIG. 1. Differential cross sections for elastic e-H scattering.
Solid circles, Williams (Ref. 20); solid curves, 1-channel CCO;
dashed curves, IERM (Ref. 6).
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)p1 TABLE IV. Cross sections (in atomic units) for 100-eV elas-

tic e-H scattering calculated by the 1-channel and 3-channel

CCO methods.

OJ 0
C3
v- )00O

C
-10'
lh

0 (deg)

0

20
30
40
50
60
70
80
90
100
120
140
160
180

1 channel

6.50
1 ~ 89
0.800
0.398
0.204
0.110
0.0636
0.0392
0.0257
0.0178
0.0130
0.007 85
0.005 62
0.004 59
0.004 31

3 channel

6.53
1.92
0.783
0.382
0.197
0.107
0.0624
0.0387
0.0255
0.0178
0.0130
0.007 94
0.005 71
0.004 72
0.00444

o &(n.ao)
a&(mao)

0.451
1.74

0.446
1.71

l

60 120
5cattering angle (deg )

180

FIG. 2. Differential cross sections for elastic e-H scattering.
Solid circles, Williams (Ref. 20); crosses, van Wingerden et al.
(Ref. 21); solid curves, 1-channel CCO; dashed curves, UEBS
(Ref. 8).

The relevant quantities for which experimental data
exist are the total ionization cross section, the total ion-
ization asymmetry, and the total excitation cross section.
Total cross sections for particular discrete excitations
also exist but it will be more interesting to compare them
with the results of a corresponding CCO calculation (see
Sec. VII).

Table I compares the total reaction (o„), ionization
(crt), and excitation (o,„) cross sections with the corre-
sponding quantities from the semiempirical compilation
of de Beer, McDowell, and %agenaar. ' The weak-
coupling approximation fails to the extent that err and

o.,„do not sum to oz. The discrepancy is noticeable at
the lower energies, but not large enough to make the con-
clusions drawn from the approximation meaningless. For
o.,„ the column CCO1 is calculated with the polarization
potential for excitation in a 1-channel CCO calculation.
For CCO3, o,„ is calculated using the 3-channel CCO
method, again with only the excitation part of the polar-
ization potential. At 30 eV both ot and o,„are seriously

overestimated by the DW optical potential. One would

expect this excessive loss of Aux from the entrance chan-
nel to manifest itself in the differential cross section for
elastic scattering. At 50 eV there is still a 14% overesti-
mate. Since the polarization potential is of second order
one might hope that this overestimate would not have a
disastrous effect on scattering in I' space. Above 100 eV
we have underestimates.

Table II shows the total ionization asymmetry Ai com-
pared with the experimental data of Fletcher et al. '

This tests the relative contributions of direct and ex-
change ionization to the continuum polarization poten-

TABLE III. Integrated elastic (oz) and total reaction (o.z) cross sections (mao) for electron-

hydrogen scattering. Errors in the semiempirical estimates (Ref. 18) (expt. ) are of the order 10%. The
CCO values are calculated with one channel in P space.

E (eV)

30
50

100
200
400

Expt. '

2.01
1.00
0.60
0.22
0.065

CCO

2.08
1.10
0.451
0.195
0.089

OE
UEBSb

0.46
0.196

PS'

1.96

0.47

0.0872

Expt. '

1.98
2.09
1.76
1.20
0.70

CCO

2.79
2.44
1.74
1.10
0.62

UEBS

1.78
1.15

PS'

1.75

1.69

0.64

'Reference 18.
Reference 8.

'Reference 22.
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TABLE V. Partial cross sections (mao ) for the 1$, 2$, and 2p (S=O and 1) channels, J=0,1, and 2 at
54.42 eV. The present calculation (CCO) is compared with that of Scholz et al. (Ref. 23) (IERM).
Numbers in square brackets denote powers of 10.

State

1$

2$

2p

1$

2$

2p

CCO (S=O)

6.16[—2]
3.1[—3]
4.1[—3]

2.85[ —2]
6.5[—3]
4.3[—3]

IERM (S=O)

6.68[—2]
2.79[—3]
3.07[—3]

2.52[ —2]
7.75[—3]
4.09[—3]

CCO (S= 1)

4.12[—1]
3.3[—3]
5.1[—3]

2.80[ —1]
9.8[ —3]
5.4[ —3]

IERM (S=1)

4.03[—1]
2.19[—3]
5.23[ —3]

2.71[—2]
1.00[ —2]
5.04[ —3]

1$

2$

2p

1.69[—2]
3.9[—3]
1.71[—2]

1.47[ —2]
3.69[—3]
1.21[—2]

8.75[—2]
1.08[ —2]
1.27[ —2]

8.30[—2]
1.23[—2]
1.40[ —2]

tial. Here the DW polarization potential is spectacularly
successful at all energies, even near threshold.

VI. ENTRANCE CHANNEL

The simplest CCO calculation of entrance-channel
phenomena, namely the elastic differential and integrated
cross sections and the total reaction cross section, is done
with P space consisting of just the entrance channel. All
other channels are included in the DW optical potential.

Figure 1 shows the elastic differential cross sections for
30 and 50 eV compared with the experimental data of
Williams. The result of the IERM method is also
shown. The CCO method is perhaps surprisingly good,
in view of the overestimate of the total reaction cross sec-
tion which must affect the elastic cross section.

Elastic differential cross sections at 100, 200, and 400
eV are shown in Fig. 2, compared with the experimental
data of Williams and van Wingerden et al. ' At these
energies the method describes elastic scattering very well.

TABLE VI. Differential cross sections (ao/sr), o E(~ao) for elastic e-H scattering. The CCO uses the 1$,2$, 2p P space. Errors in
the final significant figures are given in parentheses. Numbers in square brackets indicate powers of 10.

0 (deg)

54.4 eV
Expt. ' CCO Expt. '

100 eV
Expt. ' CCO Expt. '

200 eV
Expt. ' CCO

0
10
15
20
25
30
40
50
60
70
80
90
100
110
120
130
140
160
180

e
C7g

4.98(51)[0]
3.12(37)[0]
2.07(23)[0]
1.36(21)[0]
1.06(12)[0]
5.22(59)[—1]
2.89(27)[ —1]
1.89(19)[—1]
1.35(14)[—1]
9.12(121)[ —2]
6.62(82)[ —2]
5.15(66)[—2]
3.86(43)[—2]
3.20(33)[—2]
2.63(30)[ —2]
2.49(26)[—2]

9.65[—1]'
2.07[0]'

8.99[0]
3.79[0]
2.38[0]
1.57[0]
1.09[0]
7.91[—1]
4.55[—1]
2.81[—1]
1.82[ —1]
1.23[—1]
8.59[—2]
6.23[—2]
4.68[—2]
3.65[—2]
2.94[—2]
2.46[—2]
2.13[—2]
1.76[—2]
1.65[—2]

9.81[—1]
2.20[0]

1.10(10)[0]
6.92(71)[—1]
5.09(49)[ —1]
2.88(27)[—1]
1.32(12)[—1]
7.22(71)[—2]
4.91(46)[ —2]
2.95(30)[—2]
2.09(20)[—2]
1.55(15)[—2]
1.15(12)[—2]
9.2(9)[—3]
7.8(7)[ —3]
6.5(7)[ —3]

1.59(11)[0]
1.17(8)[0]

5.25(35)[—1]
2.57(21)[—1]
1.31(10)[ —1]
7.4(8)[ —2]
4.8(5)[ —2]
3.19(34)[—2]
2.27(20) [—2]
1.62(20) [—2]
1.30(15)[ —2]
1.07(12)[ —2]
8.4(9)[ —3]

6.0[—1]
1.76[0]

6.53[0]
1.92[0]
1.18[0]
7.83[—1]
5.44[ —1]
3.82[ —1]
1.97[—1]
1.07[—1]
6.24[ —2]
3.87[ —2]
2.55[ —2]
1.78[—2]
1.30[—2]
9.96[—3]
7.94[—3]
6.61[—3]
5.71[—3]
4.72[ —3]
4.44[ —3]

4.46[ —1]
1.71[0]

1.22(12)[0]
4.19(40)[ —1]

1.72(17)[ —1]
7.06(68)[ —2]
3.14(32)[ —2]
1.87(19)[—2]
1.25{14)[—2]
8.59(92)[ —3]
5.84(61)[—3]
4.12(42)[ —3]
3.23(31)[—3]
2.72(35)[—3]
1.99{25)[—3]
1.78(26)[—3]

5.77(48)[—1]

2.00(15)[—1]
7.74(73)[—2]
3.79(32)[—2]
2.37(23)[—2]
1.45(13)[ —2]
1.00(10)[ —2]
6.2(8)[—3]
4.11(51)[—3]
3.47(60)[ —3]

2.2[ —1]
1.20[0]

4.42[0]
1.01[0]
6.27[ —1]
3.91[—1]
2.44[ —1]
1.55[—1]
6.67[—2]
3.20[ —2]
1.72[-2]
1.02[ —2]
6.53[—3]
4.46[ —3]
3.22[ —3]
2.46[ —3]
1.96[—3]
1.64[ —3]
1.41[—3]
1.17[—3]
1.18[—3]

1.94[ —1]
1.09[0]

'Cubic spline interpolation in the table of %'illiams (Ref. 20).
Linear interpolation in the table of de Heer et aI. (Ref. 18).

'Reference 20.
Reference 21.

'Reference 18.
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FIG. 3. Differential cross sections for elastic e-H scattering.
Solid circles, Williams (Ref. 20); crosses, van Wingerden et al. ,
(Ref. 21); solid curves, 3-channel CCO; long-dashed curves,
UEBS (Ref. 8); short-dashed curves, PS (Ref. 9).

It is compared with the UEBS.
The integrated elastic o.E and total reaction o„cross

sections are given in Table III in comparison with the
semiempirical data of de Beer et al. ' The results of two
other elastic channel calculations are included. They are
UEBS (Ref. 8) and the pseudostate optical potential cal-
culation PS of Callaway and Unnikrishnan. There is
little to choose between the calculations of o&, but it has
proved possible to find a set of pseudostate parameters
that outperforms the CCO method for crz at 30 eV. PS
(Ref. 22) also gives elastic differential cross sections that
are better than CCO at 30 eV and very close at higher en-
ergies.

It is not considered worthwhile to give tables of numer-
ical differential cross sections for the 1-channel calcula-
tion. Full details are given in Sec. VII for the 3-channel
calculation.

VII. THREE-CHANNEL I' SPACE

The CCO calculation has been done at 54.4, 100, and
200 eV for P space consisting of the 1s, 2s, and 2p chan-
nels. It is interesting first to consider the 1s channel
where we can test the validity of the discrete polarization
potential for the 2s and 2p channels by comparing results
of calculations that include these channels either in P
space or Q space.

Table IV compares 1s cross sections at 100 eV calculat-
ed by the 1-channel and 3-channel CCO methods.
Differences are no more than about 3%. The column
CCO3 in Table I gives the total excitation cross sections
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FIG. 4. Differential cross sections for the (a) 2s and (b) 2p excitation of hydrogen at 54.4 eV. Solid circles, Williams (Ref. 25)
(method 2); open squares, Williams (Ref. 25) (method 1); crosses, Frost and Weigold (Ref. 24); solid curves, CCO; long-dashed curves,
IERM (Ref. 6); short-dashed curves, PS (Ref. 9).
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TABLE VII. Differential cross sections (a/sr) and integrated cross section o z, (mao~ ) for the 2s exci-

tation of hydrogen at 54.4 eV. Errors in the final significant figures are given in parentheses. Numbers

in square brackets indicate powers of 10.

8 (deg)

0
10
20
25
30
40
50
60
70
80
90
100
120
130
140
160
180

Expt. '

3.80(128)[—1]
9.0(18)[—2]

3.5(39)[—2]
1.65(128)[—2]

1.01(48)[—2]
7.9(34)[—3 ]
6.15(247)[—3]
5.43(117)[—3]
3.85(105)[—3]
2.82(98)[—3]

2.18(87)[ —3]

Expt. '

5.94(94)[ —1]
1.16(17)[ —1]

3.75(40)[ —2]
1.84(47)[ —2]

1.06(31)[—2]
7.04(218)[ —3]
5.27(163)[—3 ]
5.70(128)[—3]
3.85(129)[ —3]
3.21(114)[ —3 ]

2.24(87)[—3]

Expt.

1.28(47)[—1]
7.4(20)[—2]
4.09(69)[—2]
1.57(31)[—2]
1.15(22)[—2]
1.09(24)[—2]

5.9(15)[—3]

4.0(13)[—3]
2.6(10)[ —3]
2.18(68)[—3]

CCO

1.32[0]
4.38[—1]
1.00[—1]
4.46[ —2]
2.07[ —2]
8.63[—3]
7.33[—3]
6.26[ —3]
5.04[ —3]
3.96[—3]
3.13[—3]
2.52[ —3]
1.80[—3]
1.58[—3]
1.43[ —3]
1.25[ —3]
1.23[—3]

cr~, (mao)

'Williams (Ref. 25) method 1.
Williams (Ref. 25) method 2.

'van Wyngaarden and Walters (Ref. 9).
4Reference 24.

5.6(4)[—2]' 6.24[ —2]

at different energies calculated in a 3-channel weak-
coupling approximation in which the only polarization
potential included is the excitation part. The excitation
part excludes 2s and 2p, since they are explicitly coupled
in P space. Comparison with CCO1 for excitation shows

that it is advantageous to include the lower excitations in
P space at the lower energies, but the DW polarization
potential represents them very well at the higher energies.

It is interesting to compare some details of the 3-
channel CCO calculation with the other detailed fully mi-

TABLE VIII. Differential cross sections (a+sr) and integrated cross section (ma ) for the 2p excita-
tion of hydrogen at 54.4 eV. Errors in the final significant figures are given in parentheses. Numbers in

square brackets indicate powers of 10.

8 (deg)

0
10
20
25
30
40
50
60
70
80
90
100
120
130
140
160
180

Expt. '

7.54(71)[0]
1.04(1 1)[0]

1.57(21)[—1]
4.36(69)[—2]

1.19(21)[ —2]
6.12(131)[ —3]
4.05(87)[ —3]
3.56(56)[—3]
2.16(46)[—3]
1.59(36)[ —3]

1.03(28)[—3]

Expt. '

9.12(69)[—1]
3.73(36)[ —1]
1.32(16)[—1]
3.64(58)[ —2]
1.50(23)[—2]
1.04(18)[—2]

4.38(80)[—3]

1.97(38)[—3]
1.08(28)[—3]
1.02(21)[—3]

CCO

4.01[1]
6.97[0]
8.61[—1]
3.29[ —1]
1.39[—1]
4.10[—2]
2.06[ —2]
1.23[—2]
8.08[—3]
5.65[ —3]
4.09[—3]
3.01[—3]
1.67[—3]
1.25[—3]
9.57[—4]
6.34[—4]
5.38[—4]

0'zp (7MO ) 0.89(8)' 0.72(3) 0.815

'Williams (Ref. 25).
van Wyngaarden and Walters (Ref. 9).

'Reference 24.
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A. The 1s channel

Numerical cross sections for the 3-channel CCO calcu-
lation are compared with experiment in Table VI. At
54.4 eV the experimental values are obtained by cubic
spline interpolation in the table of Williams. Errors are
those of the 50-eV experiment. Differential cross sections
are compared with experiment in Fig. 3.

In general the CCO differential cross sections are less
than the experimental values, particularly at smaller an-
gles where they are well outside the experimental error
limits. Comparing CCO with other calculations at 100
eV, the UEBS (Ref. 8) does better at small and large an-

gles, but considerably worse over most of the angular dis-
tribution. The 3-channel PS calculation of van Wyngaar-
den and Walters is very similar to CCO over most of the
range but somewhat better at small and large angles.
However, the differences between calculations are smaller
than the experimental errors. At 200 eV, differences be-
tween the same three calculations are almost impercepti-
ble. Overall the agreement between calculations is very
significant compared with the discrepancy between calcu-
lations and experiment.

I I

60 120
Scattering angle (deg }

180

croscopic calculation that has been done, namely the
IERM method, for total angular momenta 0, 1, and 2.
In Table V we compare the partial cross sections for the
three channels at 54.42 eV. There are no qualitative
discrepancies.

rIG. 5. The angular correlation parameters A, and R for the
2p excitation of hydrogen at 54.4 eV. Solid circles, Williams
(Ref. 25); crosses, Hood et al. (Ref. 27) (8 & 20'), Weigold et al.
(Ref. 28) (8& 20'). Curves as for Fig. 4.

B. The 2s channel

The 2s and 2p differential cross sections have been ex-
perimentally separated at 54.4 eV by Frost and Weigold
and Williams. The CCO cross sections for 2s are com-
pared with experimental data in Fig. 4(a) together with
two detailed calculations IERM (Ref. 6) and PS. All cal-
culated cross sections are somewhat lower than the cen-
tral experimental values. Differences between the three
calculations are much smaller than the experimental er-
rors.

Numerical values of CCO differential and integrated
cross sections are compared with experiment in Table

TABLE IX. The angular correlation parameters A, and R for the 2p excitation of hydrogen at 54.4 eV. Errors in the final

significant figures are given in parentheses. Numbers in square brackets indicate powers of 10.

8 (deg)

10
15
20
25
30
40
50
60
70
80
90
100
120
130
133
140

Expt. '

3.41(45)[—1]
1.88(32)[—1]
2.25(25)[—I j

5.53(39)[—1]
8.17(56)[ —1]

9.22(62) [ —1]
9.16(39)[ —1]

4.83(52)[—1]
3.54(33)[ —1]
5.25(42) [—1]
7.27(45)[ —1]

9.01(43)[ —1]

Expt b

2.42[ —1]
2.80[ —1]
2.81[—1]
4.04(49)[—1]
5.03(42)[ —1]
7.78(62)[ —1]
9.95(64)[ —1]
1.07(S)'

8.1(12)[ —1]

4.1(17)[—1]

8.7(25)[—I ]

CCO

3.38[ —1]
2.39[—1]
2.15[—1]
2.46[ —1]
3.45[ —1]
6.69[—1]
8.61[—1]
9.05[ —1]
8.75[—1]
8.21[—1]
7.74[ —1]
7.50[ —1]
7.53[—1]
7.76[ —1]
7.86[—1]
8.13[—1]

Expt. '

2.83(27)[ —1]
2.35{25)[—1]
2.08(23)[ —1]

1.81(21)[ —1]
1.22(18)[ —1]

8.2(26)[—2 ]
2.7(21)[ —2]

—5.1{29)[—2]—1.13(33)[—1]
—6.51(31)[ —2]
—4.0(57)[—2]

—5.6(35)[—2]

R
Expt.

2.71[—1]
2.30[—1]
2.49[—1]
1.94(20)[—1]
1.55(24)[—1]
1 49(34)[ 11
1.74(34)[—1]
6.8(41)[—2]

—4.5(64)[ —2]

—6.5(90)[—2]

—1.1(13)[—1]

CCO

3.22[ —1]
2.69[—1]
2.25[ —1]
1.9[—1]
1.7[—1]
1.79[—1]
1.68[ —1]
1.16[—1]
6.53[—2]
3.76[—2]
3.07[—2]
3.28[ —2]
4.40[ —2]
4.78[ —2]
4.89[—2]
5.31[—2]

'%'illiams (Ref. 25).
0 20: Hood et al. (Ref. 27) L9&20: %eigold et al. ' (Ref. 28).
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C. The 2p channel

Differential cross sections for the 2p channel at 54.4 eV
are given in Table VIII and Fig. 4(b) for the same calcula-
tions and experiments as the 2s cross sections. The
difference between calculations is of the order of the ex-
perirnental error. CCO agrees better with the large for-
ward cross sections than the other calculations. The
CCO value for uz lies between the value quoted by van
Wyngaarden and Walters and the independent measure-
ment of Williams.

Other important observables that have been measured
at 54.4 eV are the angular correlation parameters A, and
R. The experimental values are compared with the calcu-
lations CCO, IERM, and PS (Ref. 9) in Fig. 5. Numeri-
cal values are given in Table IX. CCO has more diSculty
than the other calculations in describing the width of the
first minimum and the depth of the second minimum for
A, , but it gives a markedly improved description of R.

D. Summed n=2 channels

I I

0 60 120 180
Scattering angle (deg)

FIG. 6. Summed differential cross sections for the n=2 exci-
tations of hydrogen. Solid circles, Williams and Willis (Ref. 29);
solid curves, CCO; long-dashed curves, UEBS (Ref. 8); short-
dashed curves, PS (Ref. 9).

VII. There is an experimental anomaly. The CCO
differential cross section consistently underestimates the
experimental values, yet the integrated cross section is
significantly greater than the value obtained by van Wyn-
gaarden and Walters by allowing for cascade corrections
to the independent experiment of Kauppila et al.

The sum of the differential cross sections for the n=2
channels has been measured by Williams and Willis (Ref.
29). Figure 6 compares the CCO result with these data,
together with the results of UEBS (Ref. 8) and PS.
Table X gives the numerical values for 54, 100, and 200
eV.

The CCO differential cross sections are very close to
the experimental values at 54 eV, in general slightly
below the central experimental values. The CCO in-
tegrated cross sections at 54 eV are significantly higher
than the independent semiempirical values of van Wyn-
gaarden and Walters. This experimental anomaly is
intensified at 100 eV, where the CCO values are well
below the differential cross sections of the experiment, al-
though the integrated cross sections are close to (but
slightly larger than) the semiempirical estimates. At 200

TABLE X. Differential (ao/sr) and integrated (mao) cross sections for the summed n=2 excitations of hydrogen at 54, 100, and
200 eV. Errors in the final significant figures are given in parentheses; numbers in square brackets indicate powers of 10.

8 (deg)

20
25
30
40
50
60
70
80
90
100
110
120
130
140

a
~as

a
CTpp

'Reference 9.

54 eV
Expt. (Ref. 29)

1.04(7)[0]
4.47(34)[ —1]
1.72(20)[ —1]
5.21(81)[ —1]
2.65(39)[ —2]
2.13(33)[ —2]
1.44(27)[ —2]
1.03(16)[—2]
9.47(59)[—3]
5.98(61)[—3 ]
4.57(87)[—3]
3.72(58)[ —3 ]
3.20(38)[—3]
3.04(47)[—3 ]

5.6(5)[—2]
7.2(3)[—1]

CCO

9.68[ —1]
3.76[ -1]
1.60[ —1]
4.92[—2]
2.77[—2]
1.88[—2]
1.32[—2]
9.56[—3]
7.22[ —3]
5.53[—3]
4.36[—3]
3.51[—3]
2.82[ —3]
2.38[—3]

6.23[ —2]
8.19[—1]

100 eV
Expt.

2.97(25)[—1]

5.19(23)[ —2]
1.82(16)[ —2]
8.73(62)[—3 ]
6.19(57)[—3]
4.07{41)[—3]
2.38(29)[ —3]

1.82(37)[ —3]

1.79(68)[ —3]

1.25(25)[ —3]

3.9(4)[—2]
6.2(3)[ —1]

CCO

3.17[—1]
9.54[ —2]
3.61[—2]
1.24[ —2]
6.85[—3]
4.15[—3]
2.68[ —3]
1.80[—3]
1.27[ —3]
9.44[ —4]
7.23[—4]
5.84[ —4]
4.86[—4]
4.18[—4]

4.44[ —2]
6.62[ —1]

200 eV
Expt.

4.97(57)[—2]

6.72(61)[—3]
2.54(38)[—3]
1.32(24)[—3]
7.27(72)[—4]
4.48(66)[ —4]
2.71(33)[ —4]
1.99(29)[ —4]
1.66(36)[—4]
1.51(28)[—4]
1.20{29)[ —4]
1.04(31)[ —4]
1.17(39)[—4)

2.5(3)[ —2]
4.5(2)[ —1]

CCO

5.12[—2]
1.34[ —2]
5.59[—3]
2.18[—3]
1.03[—3]
5.83[—4]
3.45[ —4]
2.35[—4]
1.69[—4]
1.25[ —4]
9.91[—4]
8.07[—5]
6.91[—5]
5.93[—5]

2.63[—2]
4.52[ —1]
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TABLE XI. The ratio of n=1 to n=2 differential cross sections. Errors in the final significant
figures are given in parentheses.

E (eV) Result 30
Scattering angle (deg)

45 60

Expt'
CCO
PS
UEBS'

11.4(7)
10.6
13.0
10.0

14.5(8)
16.1
19.3
14.6

14.8(8)
15.0
18.2
15.1

'Reference 30.
'Reference 9.
'Reference 8.

Expt
CCO
PS
UEBS

25.4(14)
27.8
29.4
30.0

28.8(15)
30.6
34.4
45.0

35.8(25)
29.7
31.0
34.0

eV, CCO agrees quite well with all the experiments, al-
though it is still below the differential cross section data
in general. CCO is significantly better than the other two
calculations at all energies.

K. Ratios of n= j. to n=2 cross sections

In view of the anomalies between independent experi-
ments and of the fact that differences between completely
different calculations were, before CCO, generally smaller
than the theoretical-experimental differences, an indepen-
dent and accurate experiment on the ratio of the n = 1 to
n =2 differential cross sections at 100 and 200 eV was re-
ported by Lower, McCarthy, and Weigold. Table XI
compares these experimental data with CCO, PS, and
UEBS 8

Although CCO is the best of the three calculations,
UEBS is very close. We note that the UEBS differential
cross sections are below the CCO values for both n = 1

and n =2 and further away from experiment.

VIII. CONCLUSIONS

The CCO method is a fully microscopic calculation of
electron-atom scattering in the sense that every aspect of
the collision is calculated ab initio. Target states are
treated in a good approximation (exactly in the case of
hydrogen). The scattering set P of target states is treated
by solving the relevant coupled integral equations. Exci-
tation of the remaining target states (Q space) is treated
by making the distorted-wave Born approximation to the
corresponding complete scattering wave functions in the
optical potential. All aspects of the collision are inter-
dependent in the calculation. States are fully antisym-
metrized. Numerical truncations are carried out to com-
plete convergence, aiming at an overall accuracy of l%%uo.

The internal consistency of the calculation for discrete
target states is checked for hydrogen by including the
n=2 states either in I' space or the optical potential.
Elastic differential cross sections and total reaction cross
sections agree extremely well at energies of 100 eV or
more. At lower energies it is advantageous to include
lower target states in P space rather than Q space.

There is no internal check for the target continuum.
The DWBA treatment is tested by calculating the total
ionization cross section in the weak-coupling approxima-
tion. Agreement with experiment is achieved at 100 eV
or more. The calculation gives overestimates at lower en-
ergies. The DWBA for ionization is checked indepen-
dently of the CCO calculation by comparing it with ex-
perimental differential cross sections. ' It gives a good
account of the larger cross sections that contribute most
to the kinematic integration in the optical potential.

The treatment of antisymmetry is very closely
confirmed by comparing total ionization asymmetries,
calculated in the weak-coupling approximation, with ex-
periment.

Comparison with completely different theoretical
methods is achieved only by looking at the results for
various scattering observables. The other microscopic
method (in principle) is the intermediate-energy R-matrix
(IERM) method, which has so far been calculated only
for hydrogen up to a total angular momentum J=4. This
method involves enormous computational labor. A com-
plete 3-channel CCO calculation for hydrogen (81 values
of the total angular momentum J) takes 50 h on the
SUN4/280. A 1-channel calculation takes 4 h. The im-
plementation of the IERM method by Scholz et al. in-
volves the standard R-matrix calculation with pseudo-
states at intermediate angular momenta J and the second
Born approximation for higher J values. Comparison has
also been made here with the unitarized eikonal-Born
series (UEBS), which agrees closely with some experi-
mental data at higher energies.

A method that is structurally similar to CCO is the
pseudostate (PS) method, which represents Q space by a
multiparameter ansatz. The need to include target con-
tinuum partial waves up to at least I.'=15 shows that
pseudostates up to I.'=2 or 3 cannot be regarded in any
sense as a discrete representation of a partial-wave-
expanded continuum. Nevertheless, Callaway and Un-
nikrishnan and van Wyngaarden and Walters have
shown that it is possible to choose pseudostates that
reproduce some experimental data well.

We summarize the results of the CCO method for the
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scattering observables in the 1s, 2s, 2p P space by observ-
ing that it gives a very good overall account of these
quantities at energies of 54.4 eV or more. In general,
difFerential cross sections are slightly lower than the ex-
perimental values. This has characterized the compar-
ison of previous calculations with experiment, but the
effect is less marked for CCO. A very pleasing feature is
the overall qualitatively correct description of the de-
tailed experiments at 54.4 eV for the 2p channel. The an-
gular distributions of all three quantities do2 /dQ, I,,
and R are qualitatively described, although details remain
to be explained. Previous calculations have not given
such a good account of all three quantities, although indi-
vidual ones, particularly A, , have been better.

The only feature of the CCO method that can be im-

proved is the description of the three-body wave func-
tions for excitations in Q space, although comparison of

the effect of including the n =2 channels in either P space
or Q space confirms that the DWBA works well for
discrete states in the context. For continuum target
states, however, CCO, in common with other scattering
methods, does not include the correct three-body bound-
ary condition for the ionization space. Nevertheless, to-
tal ionization cross sections at 100 eV or more are well
described and total ionization asymmetries are excellent
at all energies.
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