19,579 research outputs found

    The experience of enchantment in human-computer interaction

    Get PDF
    Improving user experience is becoming something of a rallying call in human–computer interaction but experience is not a unitary thing. There are varieties of experiences, good and bad, and we need to characterise these varieties if we are to improve user experience. In this paper we argue that enchantment is a useful concept to facilitate closer relationships between people and technology. But enchantment is a complex concept in need of some clarification. So we explore how enchantment has been used in the discussions of technology and examine experiences of film and cell phones to see how enchantment with technology is possible. Based on these cases, we identify the sensibilities that help designers design for enchantment, including the specific sensuousness of a thing, senses of play, paradox and openness, and the potential for transformation. We use these to analyse digital jewellery in order to suggest how it can be made more enchanting. We conclude by relating enchantment to varieties of experience.</p

    HST and Spitzer Observations of the Host Galaxy of GRB 050904: A Metal-Enriched, Dusty Starburst at z=6.295

    Get PDF
    We present deep Hubble Space Telescope and Spitzer Space Telescope observations of the host galaxy of GRB 050904 at z=6.295. The host is detected in the H-band and marginally at 3.6 micron. From these detections, and limits in the z'-band and 4.5 micron, we infer an extinction-corrected absolute magnitude, M(UV)=-20.7 mag, or ~L*, a substantial star formation rate of 15 solar masses per year, and a stellar mass of a few 10^9 solar masses. A comparison to the published sample of spectroscopically-confirmed galaxies at z>5.5 reveals that the host of GRB 050904 would evade detection and/or confirmation in any of the current surveys due to the lack of detectable Ly-alpha emission, which is likely the result of dust extinction (A[1200]~1.5 mag). This suggests that not all luminous starburst galaxies at z~6 are currently being accounted for. Most importantly, using the metallicity of Z~0.05 solar inferred from the afterglow absorption spectrum, our observations indicate for the first time that the observed evolution in the mass- and luminosity-metallicity relations from z=0 to z~2 continues on to z>6. The ease of measuring redshifts and metallicities from the afterglow emission suggests that in tandem with the next generation ground- and space-based telescopes, a GRB mission with dedicated near-IR follow-up can provide unique information on the evolution of stars and galaxies through the epoch of re-ionization.Comment: Submitted to ApJ; 11 pages, 5 figures; A high-resolution version of figure 1 can be found at http://www.ociw.edu/~eberger/fig1.050904.berger.ep

    Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

    Full text link
    (Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the "cooling core" structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as "cooling flow" clusters and dynamically relaxed "non-cooling flow" clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Assessing Human Error Against a Benchmark of Perfection

    Full text link
    An increasing number of domains are providing us with detailed trace data on human decisions in settings where we can evaluate the quality of these decisions via an algorithm. Motivated by this development, an emerging line of work has begun to consider whether we can characterize and predict the kinds of decisions where people are likely to make errors. To investigate what a general framework for human error prediction might look like, we focus on a model system with a rich history in the behavioral sciences: the decisions made by chess players as they select moves in a game. We carry out our analysis at a large scale, employing datasets with several million recorded games, and using chess tablebases to acquire a form of ground truth for a subset of chess positions that have been completely solved by computers but remain challenging even for the best players in the world. We organize our analysis around three categories of features that we argue are present in most settings where the analysis of human error is applicable: the skill of the decision-maker, the time available to make the decision, and the inherent difficulty of the decision. We identify rich structure in all three of these categories of features, and find strong evidence that in our domain, features describing the inherent difficulty of an instance are significantly more powerful than features based on skill or time.Comment: KDD 2016; 10 page

    Detection of HC11N in the Cold Dust Cloud TMC-1

    Get PDF
    Two consecutive rotational transitions of the long cyanopolyyne HC11N, J=39-38, and J=38-37, have been detected in the cold dust cloud TMC-1 at the frequencies expected from recent laboratory measurements by Travers et al. (1996), and at about the expected intensities. The astronomical lines have a mean radial velocity of 5.8(1) km/s, in good agreement with the shorter cyanopolyynes HC7N and HC9N observed in this very sharp-lined source [5.82(5) and 5.83(5) km/s, respectively]. The column density of HC11N is calculated to be 2.8x10^(11) cm^(-2). The abundance of the cyanopolyynes decreases smoothly with length to HC11N, the decrement from one to the next being about 6 for the longer carbon chains.Comment: plain tex 10 pages plus 3 ps fig file

    Interesting thermomagnetic history effects in the antiferromagnetic state of SmMn_2Ge_2

    Full text link
    We present results of magnetization measurements showing that the magnetic response of the antiferromagnetic state of SmMn_2Ge_2 depends on the path used in the field(H)-temperature(T) phase space to reach this state. Distinct signature of metastablity is observed in this antiferromagnetic state when obtained via field-cooling/field-warming paths. The isothermal M-H loops show lack of end-point memory, reminiscent of that seen in metastable vortex states near the field-induced first order phase transition in various type-II superconductors.Comment: 11 pages of text and 3 figure
    • …
    corecore