25 research outputs found

    New Paramagnetic Susceptibility Thermometers for Fundamental Physics Measurements

    Get PDF
    New paramagnetic susceptibility thermometers have been developed for use in fundamental physics missions in earth orbit. These devices use a SQUID magnetometer to measure the variation in the dc magnetization of a thermometric element that consists of a dilute concentration of manganese in a palladium matrix. Near 2.2 K these new PdMn thermometers have demonstrated a temperature resolution of better than 100 pK/√Hz and a time constant of 50 ms when operated with a 50 K/W thermal resistance to the liquid helium sample. These thermometers have been observed to be remarkably stable, with a drift of less than 10 fK/s. The observed power spectral density of the noise from these thermometers is consistent with separate measurements of the device’s time constant and thermal standoff from the bath. Recently these PdMn materials have been made into thin films and microstructures for use in future studies of quantum liquids, and for possible use in a new class of bolometers and radiometers. These thermometers have been integrated into an experimental cell and thermal isolation network that are adequate to keep stray heats stable to within a few picowatts, with no systematic temperature errors greater than 60 pK, over the course of a planned fundamental physics experiment on Earth orbit

    'Heat from Above' Heat Capacity Measurements in Liquid He-4

    Get PDF
    We have made heat capacity measurements of superfluid He-4 at temperatures very close to the lambda point, T(sub lambda) , in a constant heat flux, Q, when the helium sample is heated from above. In this configuration the helium enters a self-organized (SOC) heat transport state at a temperature T(sub SOC)(Q), which for Q greater than or = 100 nW/sq cm lies below T(sub lambda). At low Q we observe little or no deviation from the bulk Q = 0 heat capacity up to T(sub SOC)(Q); beyond this temperature the heat capacity appears to be sharply depressed, deviating dramatically from its bulk behaviour. This marks the formation and propagation of a SOC/superfluid two phase state, which we confirm with a simple model. The excellent agreement between data and model serves as an independent confirmation of the existence of the SOC state. As Q is increased (up to 6 micron W/sq cm) we observe a Q dependant depression in the heat capacity that occurs just below T(sub SOC)(Q), when the entire sample is still superfluid. This is due to the emergence of a large thermal resistance in the sample, which we have measured and used to model the observed heat capacity depression. Our measurements of the superfluid thermal resistivity are a factor of ten larger than previous measurements by Baddar et al

    ‘Heat from Above’ Heat Capacity Measurements in Liquid ^4He

    No full text
    We have made heat capacity measurements of superfluid ^4He at temperatures very close to the lambda point, T_λ, in a constant heat flux, Q, when the helium sample is heated from above. In this configuration the helium enters a self-organized (SOC) heat transport state at a temperature T soc(Q), which for Q≥100 nW/cm^2 lies below T_λ. At low Q we observe little or no deviation from the Q=0 heat capacity up to T_(SOC)(Q); beyond this temperature the heat capacity appears to be sharply depressed, deviating dramatically from its bulk behaviour. This marks the formation and propagation of a SOC/superfluid two phase state, which we confirm with a simple model. The excellent agreement between data and model serves as an independent confirmation, of the existence of the SOC state. As Q is increased (up to 6 µW/cm^2) we observe a Q dependent depression in the heat capacity that occurs just below T_(SOC)(Q), when the entire sample is still superfluid, This is due to the emergence of a large thermal resistance in the sample, which we have measured and used to model the observed heat capacity depression. Our measurements of the superfluid thermal resistivity are a factor of ten larger than previous measurements by Baddar et al
    corecore