1,121 research outputs found

    On the memory code in serial feature-positive discriminations

    Get PDF
    The aim of the present research was to examine the nature of the memory code that contributes to performance in a serial feature-positive discrimination. In order to test the hypothesis that a reinforce expectancy based on the first-order association between feature element and reinforce defines the content of the code, different groups of rats received various forms of pretraining involving either the feature element or the common element, or both. For some groups the feature element was trained as a CS+, while for others it was trained as a CS-. In addition, some groups received training establishing the common element as a CS+. The effects of these forms of element pretraining on the development of a serial feature-positive discrimination were then examined. Behavioral observations of the animals suggested that the existence of a first-order association between either the feature element of the common element and reinforcement resulted in a decrement in serial feature-positive discrimination performance, a result that was incompatible with the original hypothesis. The finding was interpreted in terms of a modified memory code that may involve a CS-specific associative learning component

    Building the Traffic, Navigation, and Situation Awareness System (T-NASA) for Surface Operations

    Get PDF
    We report the results of a part-task simulation evaluating the separate and combined effects of an electronic moving map display and newly developed HUD symbology on ground taxi performance, under moderate- and low-visibility conditions. Twenty-four commercial airline pilots carried out a series of 28 gate-to-runway taxi trials at Chicago O'Hare. Half of the trials were conducted under moderate visibility (RVR 1400 ft), and half under low visibility (RVR 700 ft). In the baseline condition, where navigation support was limited to surface features and a Jeppesen paper map, navigation errors were committed on almost half of the trials. These errors were virtually abolished when the electronic moving map or the HUD symbology was available; in addition, compare, the baseline condition, both forms of navigation aid yielded an increase in forward taxi speed. The speed increase was greater for HUD than the electronic moving map, and greater under low visibility than under moderate visibility. These results suggest that combination of electronic moving map and HUD symbology has the potential to greatly increase the efficiency of ground operations, particularly under low-visibility conditions

    Operations Concepts for Deep-Space Missions: Challenges and Opportunities

    Get PDF
    Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operation

    Putting Integrated Systems Health Management Capabilities to Work: Development of an Advanced Caution and Warning System for Next-Generation Crewed Spacecraft Missions

    Get PDF
    Integrated System Health Management (ISHM) technologies have advanced to the point where they can provide significant automated assistance with real-time fault detection, diagnosis, guided troubleshooting, and failure consequence assessment. To exploit these capabilities in actual operational environments, however, ISHM information must be integrated into operational concepts and associated information displays in ways that enable human operators to process and understand the ISHM system information rapidly and effectively. In this paper, we explore these design issues in the context of an advanced caution and warning system (ACAWS) for next-generation crewed spacecraft missions. User interface concepts for depicting failure diagnoses, failure effects, redundancy loss, "what-if" failure analysis scenarios, and resolution of ambiguity groups are discussed and illustrated

    Evaluating Fault Management Operations Concepts for Next-Generation Spacecraft: What Eye Movements Tell Us

    Get PDF
    Performance enhancements associated with selected forms of automation were quantified in a recent human-in-the-loop evaluation of two candidate operational concepts for fault management on next-generation spacecraft. The baseline concept, called Elsie, featured a full-suite of "soft" fault management interfaces. However, operators were forced to diagnose malfunctions with minimal assistance from the standalone caution and warning system. The other concept, called Besi, incorporated a more capable C&W system with an automated fault diagnosis capability. Results from analyses of participants' eye movements indicate that the greatest empirical benefit of the automation stemmed from eliminating the need for text processing on cluttered, text-rich displays

    Noise-Activated Escape from a Sloshing Potential Well

    Full text link
    We treat the noise-activated escape from a one-dimensional potential well of an overdamped particle, to which a periodic force of fixed frequency is applied. We determine the boundary layer behavior, and the physically relevant length scales, near the oscillating well top. We show how stochastic behavior near the well top generalizes the behavior first determined by Kramers, in the case without forcing. Both the case when the forcing dies away in the weak noise limit, and the case when it does not, are examined. We also discuss the relevance of various scaling regimes to recent optical trap experiments.Comment: 9 pages, no figures, REVTeX, expanded versio

    Influence of Combined Whole-Body Vibration Plus G-Loading on Visual Performance

    Get PDF
    Recent engineering analyses of the integrated Ares-Orion stack show that vibration levels for Orion crews have the potential to be much higher than those experienced in Gemini, Apollo, and Shuttle vehicles. Of particular concern to the Constellation Program (CxP) is the 12 Hz thrust oscillation (TO) that the Ares-I rocket develops during the final ~20 seconds preceding first-stage separation, at maximum G-loading. While the structural-dynamic mitigations being considered can assure that vibration due to TO is reduced to below the CxP crew health limit, it remains to be determined how far below this limit vibration must be reduced to enable effective crew performance during launch. Moreover, this "performance" vibration limit will inform the operations concepts (and crew-system interface designs) for this critical phase of flight. While Gemini and Apollo studies provide preliminary guidance, the data supporting the historical limits were obtained using less advanced interface technologies and very different operations concepts. In this study, supported by the Exploration Systems Mission Directorate (ESMD) Human Research Program, we investigated display readability-a fundamental prerequisite for any interaction with electronic crew-vehicle interfaces-while observers were subjected to 12 Hz vibration superimposed on the 3.8 G loading expected for the TO period of ascent. Two age-matched groups of participants (16 general population and 13 Crew Office) performed a numerical display reading task while undergoing sustained 3.8 G loading and whole-body vibration at 0, 0.15, 0.3, 0.5, and 0.7 g in the eyeballs in/out (x-axis) direction. The time-constrained reading task used an Orion-like display with 10- and 14-pt non-proportional sans-serif fonts, and was designed to emulate the visual acquisition and processing essential for crew system monitoring. Compared to the no-vibration baseline, we found no significant effect of vibration at 0.15 and 0.3 g on task error rates (ER) or response times (RT). Significant degradations in both ER and RT, however, were observed at 0.5 and 0.7 g for 10-pt, and at 0.7 g for 14-pt font displays. These objective performance measures were mirrored by participants' subjective ratings. Interestingly, we found that the impact of vibration on ER increased with distance from the center of the display, but only for vertical displacements. Furthermore, no significant ER or RT aftereffects were detected immediately following vibration, regardless of amplitude. Lastly, given that our reading task required no specialized spaceflight expertise, our finding that effects were not statistically distinct between our two groups is not surprising. The results from this empirical study provide initial guidance for evaluating the display readability trade-space between text-font size and vibration amplitude. However, the outcome of this work should be considered preliminary in nature for a number of reasons: 1. The single 12 Hz x-axis vibration employed was based on earlier load-cycle models of the induced TO environment at the end of Ares-I first stage flight. Recent analyses of TO mitigation designs suggest that significant concurrent off-axis vibration may also occur. 2. The shirtsleeve environment in which we tested fails to capture the full kinematic and dynamic complexity of the physical interface between crewmember and the still-to-bematured helmet-suit-seat designs, and the impact these will have for vibration transmission and consequent performance. 3. By examining performance in this reading and number processing task, we are only assessing readability, a first and necessary step that in itself does not directly address the performance of more sophisticated operational tasks such as vehicle-health monitoring or manual control of the vehicle

    Effects of Transverse Seat Vibration on Near-Viewing Readability of Alphanumeric Symbology

    Get PDF
    We measured the impacts on human visual function of a range of vibration levels (0.15, 0.3, 0.5, and 0.7 g) at the frequency and along the axis of the anticipated Ares thrust oscillation. We found statistically significant and equivalent decrements in performance on a reading and a numeric processing task at tested vibration levels above 0.3 g (0-to-peak), but no evidence of after-effects. At the smallest font and highest vibration level tested, the average effect was a 50 percent increase in response time and six-fold increase in errors. Our findings support a preliminary trade space in which currently planned Orion font sizes and text spacing appear to be too small to support accurate and efficient reading at the tested vibration levels above 0.3 g, but not too small to support reading at 0.3 g. This study does not address potential impacts on crew cognitive decision-making or motor control and does not test either the full induced Orion-Ares environment with its sustained Gx-loading or the full complexity of the final Orion seat-helmet-suit interface. A final determination of the Orion-Ares program limit on vibration must take these additional factors into consideration and, thus, may need to be lower than that needed to support effective reading at 1-Gx bias

    Stroboscopic Image Modulation to Reduce the Visual Blur of an Object Being Viewed by an Observer Experiencing Vibration

    Get PDF
    A method and apparatus for reducing the visual blur of an object being viewed by an observer experiencing vibration. In various embodiments of the present invention, the visual blur is reduced through stroboscopic image modulation (SIM). A SIM device is operated in an alternating "on/off" temporal pattern according to a SIM drive signal (SDS) derived from the vibration being experienced by the observer. A SIM device (controlled by a SIM control system) operates according to the SDS serves to reduce visual blur by "freezing" (or reducing an image's motion to a slow drift) the visual image of the viewed object. In various embodiments, the SIM device is selected from the group consisting of illuminator(s), shutter(s), display control system(s), and combinations of the foregoing (including the use of multiple illuminators, shutters, and display control systems)

    Silver(I) complexes of 9-anthracenecarboxylic acid and imidazoles: synthesis, structure and antimicrobial activity

    Get PDF
    [Ag2(9-aca)2] (1) (9-acaH = 9-anthracenecarboxylic acid) reacts with a series of imidazoles to give [Ag(imidH)2.3(CH3CN)0.7](9-aca) (3), [Ag6(imidH)4(9-aca)6(MeOH)2] (4), {[Ag(1-Me-imid)2]2[Ag4(9- aca)6]} (5), {[Ag(1-Bu-imid)2]2[Ag4(9-aca)6]} (6) and [Ag(apim)](9-aca)·H2O (7) (imidH = imidazole; 1-Me-imid = 1-methylimidazole; 1-Bu-imid = 1-butylimidazole; apim = 1-(3-aminopropyl)imidazole). The mononuclear complex 3, hexanuclear 4–6, and polymeric 7, were all characterised using X-ray crystallography. While many of the complexes possess excellent in vitro antifungal and antibacterial activities they are, unanimously, more effective against fungal cells. The insect, Galleria mellonella, can survive high doses of the Ag(I) complexes administered in vivo, and a number of the complexes offer significant protection to larvae infected with a lethal dose of pathogenic Candida albicans cells
    • …
    corecore