20 research outputs found

    The Status of the United States Population of Night Shark, Carcharhinus signatus

    Get PDF
    Night sharks, Carcharhinus signatus, are an oceanic species generally occurring in outer continental shelf waters in the western North Atlantic Ocean including the Caribbean Sea and Gulf of Mexico. Although not targeted, night sharks make up a segment of the shark bycatch in the pelagic longline fishery. Historically, night sharks comprised a significant proportion of the artisanal Cuban shark fishery but today they are rarely caught. Although information from some fisheries has shown a decline in catches of night sharks, it is unclear whether this decline is due to changes in fishing tactics, market, or species identification. Despite the uncertainty in the decline, the night shark is currently listed as a species of concern due to alleged declines in abundance resulting from fishing effort, i.e. overutilization. To assess their relevance to the species of concern list, we collated available information on the night shark to provide an analysis of its status. Night shark landings were likely both over- and under-reported and thus probably did not reflect all commercial and recreational catches, and overall they have limited relevance to the current status of the species. Average size information has not changed considerably since the 1980’s based on information from the pelagic longline fishery when corrected for gear bias. Analysis of biological information indicates night sharks have intrinsic rates of increase (r) about 10% yr–1 and have moderate rebound potential and an intermediate generation time compared to other sharks. An analysis of trends in relative abundance from four data sources gave conflicting results, with one series in decline, two series increasing, and one series relatively flat. Based on the analysis of all currently available information, we believe the night shark does not qualify as a species of concern but should be retained on the prohibited species list as a precautionary approach to management until a more comprehensive stock assessment can be conducted

    A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf

    Get PDF
    Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability

    Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (Galeocerdo cuvier)

    No full text
    Given climate change threats to ecosystems, it is critical to understand the responses of species to warming. This is especially important in the case of apex predators since they exhibit relatively high extinction risk, and changes to their distribution could impact predator-prey interactions that can initiate trophic cascades. Here we used a combined analysis of animal tracking, remotely sensed environmental data, habitat modeling, and capture data to evaluate the effects of climate variability and change on the distributional range and migratory phenology of an ectothermic apex predator, the tiger shark (Galeocerdo cuvier). Tiger sharks satellite tracked in the western North Atlantic between 2010 and 2019 revealed significant annual variability in the geographic extent and timing of their migrations to northern latitudes from ocean warming. Specifically, tiger shark migrations have extended farther poleward and arrival times to northern latitudes have occurred earlier in the year during periods with anomalously high sea-surface temperatures. A complementary analysis of nearly 40 years of tiger shark captures in the region revealed decadal-scale changes in the distribution and timing of shark captures in parallel with long-term ocean warming. Specifically, areas of highest catch densities have progressively increased poleward and catches have occurred earlier in the year off the North American shelf. During periods of anomalously high sea-surface temperatures, movements of tracked sharks shifted beyond spatial management zones that had been affording them protection from commercial fishing and bycatch. Taken together, these study results have implications for fisheries management, human-wildlife conflict, and ecosystem functioning

    Seasonal Distribution and Historic Trends in Abundance of White Sharks, <i>Carcharodon carcharias</i>, in the Western North Atlantic Ocean

    No full text
    <div><p>Despite recent advances in field research on white sharks (<i>Carcharodon carcharias</i>) in several regions around the world, opportunistic capture and sighting records remain the primary source of information on this species in the northwest Atlantic Ocean (NWA). Previous studies using limited datasets have suggested a precipitous decline in the abundance of white sharks from this region, but considerable uncertainty in these studies warrants additional investigation. This study builds upon previously published data combined with recent unpublished records and presents a synthesis of 649 confirmed white shark records from the NWA compiled over a 210-year period (1800-2010), resulting in the largest white shark dataset yet compiled from this region. These comprehensive records were used to update our understanding of their seasonal distribution, relative abundance trends, habitat use, and fisheries interactions. All life stages were present in continental shelf waters year-round, but median latitude of white shark occurrence varied seasonally. White sharks primarily occurred between Massachusetts and New Jersey during summer and off Florida during winter, with broad distribution along the coast during spring and fall. The majority of fishing gear interactions occurred with rod and reel, longline, and gillnet gears. Historic abundance trends from multiple sources support a significant decline in white shark abundance in the 1970s and 1980s, but there have been apparent increases in abundance since the 1990s when a variety of conservation measures were implemented. Though the white shark's inherent vulnerability to exploitation warrants continued protections, our results suggest a more optimistic outlook for the recovery of this iconic predator in the Atlantic.</p></div

    Recent trends in white shark relative abundance.

    No full text
    <p>Estimates of relative change in abundance (filled circles) with 95% credible intervals (dashed lines) for any reference year between 1990 and 2008 assuming no change in observation effort (black plot), a 25% and 50% increase in observation effort (green and red plots, respectively), and a 25% and 50% decrease in observation effort (blue and purple plots, respectively) for the original sightings time series from 1990 to 2009 (a) and the time series with sightings that occurred near Monomoy Island during that time frame removed (b).</p

    White shark seasonal distribution.

    No full text
    <p>Distribution of white shark presence records (white circles) in the NWA during (a) winter, (b) spring, (c) summer, and (d) fall. Positions are overlaid on seasonal average SST conditions (1985–2001). The 200 m bathymetric contour is displayed to delineate the edge of the continental shelf. CC  =  Cape Cod, NYB  =  New York Bight, CH  =  Cape Hatteras, FL  =  Florida, GOM  =  Gulf of Mexico, and CS  =  Caribbean Sea.</p

    White shark relative decline in abundance.

    No full text
    <p>Estimates of relative decline in abundance (filled circles) with 95% credible intervals (dashed lines) for any reference year between 1960 and 1986 assuming no change in observation effort (black plot), a 25% and 50% increase in observation effort (green and red plots, respectively), and a 25% and 50% decrease in observation effort (blue and purple plots, respectively). Note that the scale for the y-axis has been reversed when compared to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0099240#pone-0099240-g008" target="_blank">Figure 8</a> to visualize the declining trend in abundance during this time period.</p

    White shark relative abundance trend.

    No full text
    <p>Time series of white shark relative abundance in the NWA as estimated from hierarchical analysis. The continuous black line gives the posterior mean, and the shaded area represents a 95% credible interval about the time series. The red line is the estimated trend based on locally weighted polynomial regression using the LOWESS smoother.</p
    corecore