8 research outputs found

    Xirp Proteins Mark Injured Skeletal Muscle in Zebrafish

    Get PDF
    Myocellular regeneration in vertebrates involves the proliferation of activated progenitor or dedifferentiated myogenic cells that have the potential to replenish lost tissue. In comparison little is known about cellular repair mechanisms within myocellular tissue in response to small injuries caused by biomechanical or cellular stress. Using a microarray analysis for genes upregulated upon myocellular injury, we identified zebrafish Xin-actin-binding repeat-containing protein1 (Xirp1) as a marker for wounded skeletal muscle cells. By combining laser-induced micro-injury with proliferation analyses, we found that Xirp1 and Xirp2a localize to nascent myofibrils within wounded skeletal muscle cells and that the repair of injuries does not involve cell proliferation or Pax7+ cells. Through the use of Xirp1 and Xirp2a as markers, myocellular injury can now be detected, even though functional studies indicate that these proteins are not essential in this process. Previous work in chicken has implicated Xirps in cardiac looping morphogenesis. However, we found that zebrafish cardiac morphogenesis is normal in the absence of Xirp expression, and animals deficient for cardiac Xirp expression are adult viable. Although the functional involvement of Xirps in developmental and repair processes currently remains enigmatic, our findings demonstrate that skeletal muscle harbours a rapid, cell-proliferation-independent response to injury which has now become accessible to detailed molecular and cellular characterizations

    Identification of Xin-repeat proteins as novel ligands of the SH3 domains of nebulin and nebulette and analysis of their interaction during myofibril formation and remodeling

    No full text
    The Xin actin-binding repeat-containing proteins Xin and XIRP2 are exclusively expressed in striated muscle cells, where they are believed to play an important role in development. In adult muscle, both proteins are concentrated at attachment sites of myofibrils to the membrane. In contrast, during development they are localized to immature myofibrils together with their binding partner, filamin C, indicating an involvement of both proteins in myofibril assembly. We identify the SH3 domains of nebulin and nebulette as novel ligands of proline-rich regions of Xin and XIRP2. Precise binding motifs are mapped and shown to bind both SH3 domains with micromolar affinity. Cocrystallization of the nebulette SH3 domain with the interacting XIRP2 peptide PPPTLPKPKLPKH reveals selective interactions that conform to class II SH3 domain-binding peptides. Bimolecular fluorescence complementation experiments in cultured muscle cells indicate a temporally restricted interaction of Xin-repeat proteins with nebulin/nebulette during early stages of myofibril development that is lost upon further maturation. In mature myofibrils, this interaction is limited to longitudinally oriented structures associated with myofibril development and remodeling. These data provide new insights into the role of Xin actin-binding repeat-containing proteins (together with their interaction partners) in myofibril assembly and after muscle damage
    corecore