4,272 research outputs found
The negative index of refraction demystified
We study electromagnetic wave propagation in mediums in which the effective
relative permittivity and the effective relative permeability are allowed to
take any value in the upper half of the complex plane. A general condition is
derived for the phase velocity to be oppositely directed to the power flow.
That extends the recently studied case of propagation in mediums for which the
relative permittivity and relative permeability are both simultaneously
negative, to include dissipation as well. An illustrative case study
demonstrates that in general the spectrum divides into five distinct regions.Comment: 5 pages, 4 figure
Strongly Localized State of a Photon at the Intersection of the Phase Slips in 2D Photonic Crystal with Low Contrast of Dielectric Constant
Two-dimensional photonic crystal with a rectangular symmetry and low contrast
(< 1) of the dielectric constant is considered. We demonstrate that, despite
the {\em absence} of a bandgap, strong localization of a photon can be achieved
for certain ``magic'' geometries of a unit cell by introducing two
phase slips along the major axes. Long-living photon mode is bound to the
intersection of the phase slips. We calculate analytically the lifetime of this
mode for the simplest geometry -- a square lattice of cylinders of a radius,
. We find the magic radius, , of a cylinder to be 43.10 percent of the
lattice constant. For this value of , the quality factor of the bound mode
exceeds . Small () deviation of from results in a
drastic damping of the bound mode.Comment: 6 pages, 2 figure
Massive creation of entangled exciton states in semiconductor quantum dots
An intense laser pulse propagating in a medium of inhomogeneously broadened
quantum dots massively creates entangled exciton states. After passage of the
pulse all single-exciton states remain unpopulated (self-induced transparency)
whereas biexciton coherence (exciton entanglement) is generated through
two-photon transitions. We propose several experimental techniques for the
observation of such unexpected behavior
Parents' involvement in child care: do parental and work identities matter?
The current study draws on identity theory to explore mothers' and fathers' involvement in childcare. It examined the relationships between the salience and centrality of individuals’ parental and work-related identities and the extent to which they are involved in various forms of childcare. A sample of 148 couples with at least one child aged 6 years or younger completed extensive questionnaires. As hypothesized, the salience and centrality of parental identities were positively related to mothers' and fathers' involvement in childcare. Moreover, maternal identity salience was negatively related to fathers' hours of childcare and share of childcare tasks. Finally, work hours mediated the negative relationships between the centrality of work identities and time invested in childcare, and gender moderated this mediation effect. That is, the more central a mother's work identity, the more hours she worked for pay and the fewer hours she invested in childcare. These findings shed light on the role of parental identities in guiding behavioral choices, and attest to the importance of distinguishing between identity salience and centrality as two components of self-structure
An Outbreak of Salmonella typhimurium at a teaching hospital
An outbreak of Salmonella typhimurium infection in December 1996 affected 52 patients, relatives, and staff of a large teaching hospital in southeast Queensland. Assorted sandwiches were identified as the vehicle of transmission. This article describes the outbreak investigation and demonstrates the importance of food hygiene and timely public health interventions
Observations of H3+ in the Diffuse Interstellar Medium
Surprisingly large column densities of H3+ have been detected using infrared
absorption spectroscopy in seven diffuse cloud sightlines (Cygnus OB2 12,
Cygnus OB2 5, HD 183143, HD 20041, WR 104, WR 118, and WR 121), demonstrating
that H3+ is ubiquitous in the diffuse interstellar medium. Using the standard
model of diffuse cloud chemistry, our H3+ column densities imply unreasonably
long path lengths (~1 kpc) and low densities (~3 cm^-3). Complimentary
millimeter-wave, infrared, and visible observations of related species suggest
that the chemical model is incorrect and that the number density of H3+ must be
increased by one to two orders of magnitude. Possible solutions include a
reduced electron fraction, an enhanced rate of H2 ionization, and/or a smaller
value of the H3+ dissociative recombination rate constant than implied by
laboratory experiments.Comment: To be published in Astrophysical Journal, March 200
Enhanced cosmic-ray flux toward zeta Persei inferred from laboratory study of H3+ - e- recombination rate
The H3+ molecular ion plays a fundamental role in interstellar chemistry, as
it initiates a network of chemical reactions that produce many interstellar
molecules. In dense clouds, the H3+ abundance is understood using a simple
chemical model, from which observations of H3+ yield valuable estimates of
cloud path length, density, and temperature. On the other hand, observations of
diffuse clouds have suggested that H3+ is considerably more abundant than
expected from the chemical models. However, diffuse cloud models have been
hampered by the uncertain values of three key parameters: the rate of H3+
destruction by electrons, the electron fraction, and the cosmic-ray ionisation
rate. Here we report a direct experimental measurement of the H3+ destruction
rate under nearly interstellar conditions. We also report the observation of
H3+ in a diffuse cloud (towards zeta Persei) where the electron fraction is
already known. Taken together, these results allow us to derive the value of
the third uncertain model parameter: we find that the cosmic-ray ionisation
rate in this sightline is forty times faster than previously assumed. If such a
high cosmic-ray flux is indeed ubiquitous in diffuse clouds, the discrepancy
between chemical models and the previous observations of H3+ can be resolved.Comment: 6 pages, Nature, in pres
Studies of Diffuse Interstellar Bands. V. Pairwise Correlations of Eight Strong DIBs and Neutral Hydrogen, Molecular Hydrogen, and Color Excess
We establish correlations between equivalent widths of eight diffuse
interstellar bands (DIBs), and examine their correlations with atomic hydrogen,
molecular hydrogen, and EB-V . The DIBs are centered at \lambda\lambda 5780.5,
6204.5, 6283.8, 6196.0, 6613.6, 5705.1, 5797.1, and 5487.7, in decreasing order
of Pearson\^as correlation coefficient with N(H) (here defined as the column
density of neutral hydrogen), ranging from 0.96 to 0.82. We find the equivalent
width of \lambda 5780.5 is better correlated with column densities of H than
with E(B-V) or H2, confirming earlier results based on smaller datasets. We
show the same is true for six of the seven other DIBs presented here. Despite
this similarity, the eight strong DIBs chosen are not well enough correlated
with each other to suggest they come from the same carrier. We further conclude
that these eight DIBs are more likely to be associated with H than with H2, and
hence are not preferentially located in the densest, most UV shielded parts of
interstellar clouds. We suggest they arise from different molecules found in
diffuse H regions with very little H (molecular fraction f<0.01). Of the 133
stars with available data in our study, there are three with significantly
weaker \lambda 5780.5 than our mean H-5780.5 relationship, all of which are in
regions of high radiation fields, as previously noted by Herbig. The
correlations will be useful in deriving interstellar parameters when direct
methods are not available. For instance, with care, the value of N(H) can be
derived from W{\lambda}(5780.5).Comment: Accepted for publication in The Astrophysical Journal; 37 pages, 11
figures, 6 table
- …