430 research outputs found

    QED for a Fibrillar Medium of Two-Level Atoms

    Get PDF
    We consider a fibrillar medium with a continuous distribution of two-level atoms coupled to quantized electromagnetic fields. Perturbation theory is developed based on the current algebra satisfied by the atomic operators. The one-loop corrections to the dispersion relation for the polaritons and the dielectric constant are computed. Renormalization group equations are derived which demonstrate a screening of the two-level splitting at higher energies. Our results are compared with known results in the slowly varying envelope and rotating wave approximations. We also discuss the quantum sine-Gordon theory as an approximate theory.Comment: 32 pages, 4 figures, uses harvmac and epsf. In this revised version, infra-red divergences are more properly handle

    Braggoriton--Excitation in Photonic Crystal Infiltrated with Polarizable Medium

    Full text link
    Light propagation in a photonic crystal infiltrated with polarizable molecules is considered. We demonstrate that the interplay between the spatial dispersion caused by Bragg diffraction and polaritonic frequency dispersion gives rise to novel propagating excitations, or braggoritons, with intragap frequencies. We derive the braggoriton dispersion relation and show that it is governed by two parameters, namely, the strength of light-matter interaction and detuning between the Bragg frequency and that of the infiltrated molecules. We also study defect-induced states when the photonic band gap is divided into two subgaps by the braggoritonic branches and find that each defect creates two intragap localized states inside each subgap.Comment: LaTeX, 8 pages, 5 figure

    Effect of deposit feeders on migration of 137Cs in lake sediments

    Full text link
    Illite clay particles with adsorbed 137Cs were added as a submillimeter layer to the surface of silt-clay sediments contained in rectangular Plexiglas cells stored in a temperature-regulated aquarium, in order to trace the effect of the oligochaete, Tubifex tubifex, and the amphipod, Pontoporeia hoyi, on mass redistribution near the sediment-water interface. A well-collimated NaI gamma detector scanned each sediment column (~10 cm deep) at daily or weekly intervals for six months, depicting the time evolution of radioactivity with and without added benthos. In a cell with tubificids (~5 x 104 m-2), which feed below 3 cm and defecate on surface sediments, the labeled layer was buried at a rate of 0.052 +/- 0.007 cm/day (20[deg]C). When labeled particles entered the feeding zone, 137Cs reappeared in surface sediments creating a bimodal activity profile. In time, the activity tended toward a uniform distribution over the upper 6 cm, decreasing exponentially below to undetectable levels by 9 cm. In a cell with amphipods (~1.6 x 104 m-2) uniform activity developed rapidly (~17 days) down to a well-defined depth (1.5 cm). The mixing of sediments by Pontoporeia is described by a simple quantitative model of eddy diffusive mixing of sediment solids. The value of the diffusion coefficient, 4.4 cm2/yr (7[deg]C) was computed from a least squares fit of theoretical to observed profile broadening over time. In a cell without benthos, small but measurable migration of 137Cs indicated an effective molecular diffusion coefficient of 0.02 cm2/yr.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23642/1/0000606.pd

    Dynamic changes in methadone utilisation for opioid use disorder treatment: a retrospective observational study during the COVID-19 pandemic

    Get PDF
    Objectives: Opioid use disorder (OUD) is a major public health concern in the USA, resulting in high rates of overdose and other negative outcomes. Methadone, an OUD treatment, has been shown to be effective in reducing the risk of overdose and improving overall health and quality of life. This study analysed the distribution of methadone for the treatment of OUD across the USA over the past decade and through the COVID-19 pandemic. Design: Retrospective observational study using secondary data analysis of the Drug Enforcement Administration and Medicaid Databases. Setting: USA. Participants: Patients who were dispensed methadone at US opioid treatment programmes (OTPs). Primary and secondary outcome measures: The primary outcomes were the overall pattern in methadone distribution and the number of OTPs in the USA per year. The secondary outcome was Medicaid prescriptions for methadone. Results: Methadone distribution for OUD has expanded significantly over the past decade, with an average state increase of +96.96% from 2010 to 2020. There was a significant increase in overall distribution of methadone to OTP from 2010 to 2020 (+61.00%, p\u3c0.001) and from 2015 to 2020 (+26.22%, p\u3c0.001). However, the distribution to OTPs did not significantly change from 2019 to 2021 (-5.15%, p=0.491). There was considerable state-level variation in methadone prescribing to Medicaid patients with four states having no prescriptions. Conclusions: There have been dynamic changes in methadone distribution for OUD. Furthermore, pronounced variation in methadone distribution among states was observed, with some states having no OTPs or Medicaid coverage. New policies are urgently needed to increase access to methadone treatment, address the opioid epidemic in the USA and reduce overdose deaths

    Optimizing postprandial glucose management in adults with insulin-requiring diabetes: Report and recommendations

    Get PDF
    Faster-acting insulins, new noninsulin drug classes, more flexible insulin-delivery systems, and improved continuous glucose monitoring devices offer unprecedented opportunities to improve postprandial glucose (PPG) management and overall care for adults with insulin-treated diabetes. These developments led the Endocrine Society to convene a working panel of diabetes experts in December 2018 to assess the current state of PPG management, identify innovative ways to improve self-management and quality of life, and align best practices to current and emerging treatment and monitoring options. Drawing on current research and collective clinical experience, we considered the following issues for the ∼200 million adults worldwide with type 1 and insulin-requiring type 2 diabetes: (i) the role of PPG management in reducing the risk of diabetes complications; (ii) barriers preventing effective PPG management; (iii) strategies to reduce PPG excursions and improve patient quality of life; and (iv) education and clinical tools to support endocrinologists in improving PPG management. We concluded that managing PPG to minimize or prevent diabetes-related complications will require elucidating fundamental questions about optimal ways to quantify and clinically assess the metabolic dysregulation and consequences of the abnormal postprandial state in diabetes and recommend research strategies to address these questions. We also identified practical strategies and tools that are already available to reduce barriers to effective PPG management, optimize use of new and emerging clinical tools, and improve patient self-management and quality of life

    Assessment of a size-based method for enriching circulating tumour cells in colorectal cancer

    Get PDF
    Circulating tumour cells (CTC) from solid tumours are a prerequisite for metastasis. Isolating CTCs and understanding their biology is essential for developing new clinical tests and precision oncology. Currently, CellSearch is the only FDA (U.S. Food and Drug Administration)-approved method for CTC enrichment but possesses several drawbacks owing to a reliance on the epithelial cell adhesion molecule (EpCAM) and a resource-intensive nature. Addressing these shortcomings, we optimised an existing size-based method, MetaCell, to enrich CTCs from blood of colorectal cancer (CRC) patients. We evaluated the ability of MetaCell to enrich CTCs by spiking blood with CRC cell lines and assessing the cell recovery rates and WBC depletion via immunostaining and gene expression. We then applied MetaCell to samples from 17 CRC patients and seven controls. Recovery rates were \u3e85% in cell lines, with \u3e95% depletion in WBCs. MetaCell yielded CTCs and CTC clusters in 52.9% and 23.5% of the patients, respectively, without false positives in control patients. CTCs and cluster detection did not correlate with histopathological parameters. Overall, we demonstrated that the MetaCell platform enriched CRC cells with high recovery rates and high purity. Our pilot study also demonstrated the ability of MetaCell to detect CTCs in CRC patients

    Preliminary Analysis of Aircraft Loss of Control Accidents: Worst Case Precursor Combinations and Temporal Sequencing

    Get PDF
    Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes, and can result from a wide spectrum of hazards, often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and their validation must provide a means of assessing system effectiveness and coverage of these hazards. This requires the definition of a comprehensive set of LOC test scenarios based on accident and incident data as well as future risks. This paper defines a comprehensive set of accidents and incidents over a recent 15 year period, and presents preliminary analysis results to identify worst-case combinations of causal and contributing factors (i.e., accident precursors) and how they sequence in time. Such analyses can provide insight in developing effective solutions for LOC, and form the basis for developing test scenarios that can be used in evaluating them. Preliminary findings based on the results of this paper indicate that system failures or malfunctions, crew actions or inactions, vehicle impairment conditions, and vehicle upsets contributed the most to accidents and fatalities, followed by inclement weather or atmospheric disturbances and poor visibility. Follow-on research will include finalizing the analysis through a team consensus process, defining future risks, and developing a comprehensive set of test scenarios with correlation to the accidents, incidents, and future risks. Since enhanced engineering simulations are required for batch and piloted evaluations under realistic LOC precursor conditions, these test scenarios can also serve as a high-level requirement for defining the engineering simulation enhancements needed for generating them

    Optodynamic simulation of β-adrenergic receptor signalling

    Get PDF
    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β(2) adrenergic receptor (opto-β(2)AR) is similar in dynamics to endogenous β(2)AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β(2)AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β(2)ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo
    corecore