4,800 research outputs found
The mismatch between current statistical practice and doctoral training in ecology
Ecologists are studying increasingly complex and important issues such as climate change and ecosystem services. These topics often involve large data sets and the application of complicated quantitative models. We evaluated changes in statistics used by ecologists by searching nearly 20,000 published articles in ecology from 1990 to 2013. We found that there has been a rise in sophisticated and computationally intensive statistical techniques such as mixed effects models and Bayesian statistics and a decline in reliance on approaches such as ANOVA or t tests. Similarly, ecologists have shifted away from software such as SAS and SPSS to the open source program R. We also searched the published curricula and syllabi of 154 doctoral programs in the United States and found that despite obvious changes in the statistical practices of ecologists, more than one-third of doctoral programs showed no record of required or optional statistics classes. Approximately one-quarter of programs did require a statistics course, but most of those did not cover contemporary statistical philosophy or advanced techniques. Only one-third of doctoral programs surveyed even listed an optional course that teaches some aspect of contemporary statistics. We call for graduate programs to lead the charge in improving training of future ecologists with skills needed to address and understand the ecological challenges facing humanity.ECU Open Access Publishing Support Fun
State and Local Anti-Predatory Lending Laws: The Effect of Legal Enforcement Mechanisms
Subprime mortgage lending has grown rapidly in recent years and with it, so have concerns about predatory lending. In response to evidence of predatory lending, most states have enacted new laws or expanded existing laws to address abuses in the subprime home loan market. The effect of these statutes is a matter of debate. This paper seeks to improve the understanding of this increasingly important issue and pays particular attention to the role that legal enforcement mechanisms play in this context. The results of the analysis are consistent with the view that anti-predatory lending laws influence subprime lending markets and that disaggregating the details of the overall legal framework into its component parts is essential for understanding subprime market dynamics. The restrictions, coverage, and enforcement components all have significant relationships with subprime market outcomes, with the coverage relationship found to be broadly consistent with the reverse lemons hypothesis put forward by Ho and Pennington-Cross (2007). The results also suggest that the newer mini-HOEPA laws have had an impact on the subprime market above and beyond the older preexisting laws, particularly for subprime originations. Broader coverage through these new laws is associated with higher origination likelihoods, while increased restrictions through the mini-HOEPA laws are associated with lower origination propensities
The Impact of State Anti-Predatory Lending Laws: Policy Implications and Insights
The subprime mortgage market, which consists of high-cost loans designed for borrowers with weak credit, has grown tremendously over the past ten years. Between 1993 and 2005, the subprime market experienced an average annual growth rate of 26 percent. As this market emerged, so did allegations that subprime loans contained predatory features or were the result of predatory sales practices.3 In the worst cases, brokers deceived borrowers about the meaning of loan terms or falsely promised to assist them in obtaining future refinance loans with better terms. In other situations, borrowers entered into loans with low teaser rates, not aware how high their monthly payments could go when their interest rates reset
Griffiths-McCoy singularities in random quantum spin chains: Exact results through renormalization
The Ma-Dasgupta-Hu renormalization group (RG) scheme is used to study
singular quantities in the Griffiths phase of random quantum spin chains. For
the random transverse-field Ising spin chain we have extended Fisher's
analytical solution to the off-critical region and calculated the dynamical
exponent exactly. Concerning other random chains we argue by scaling
considerations that the RG method generally becomes asymptotically exact for
large times, both at the critical point and in the whole Griffiths phase. This
statement is checked via numerical calculations on the random Heisenberg and
quantum Potts models by the density matrix renormalization group method.Comment: 4 pages RevTeX, 2 figures include
Lifespan theorem for constrained surface diffusion flows
We consider closed immersed hypersurfaces in and evolving by
a class of constrained surface diffusion flows. Our result, similar to earlier
results for the Willmore flow, gives both a positive lower bound on the time
for which a smooth solution exists, and a small upper bound on a power of the
total curvature during this time. By phrasing the theorem in terms of the
concentration of curvature in the initial surface, our result holds for very
general initial data and has applications to further development in asymptotic
analysis for these flows.Comment: 29 pages. arXiv admin note: substantial text overlap with
arXiv:1201.657
Griffiths-McCoy Singularities in the Random Transverse-Field Ising Spin Chain
We consider the paramagnetic phase of the random transverse-field Ising spin
chain and study the dynamical properties by numerical methods and scaling
considerations. We extend our previous work [Phys. Rev. B 57, 11404 (1998)] to
new quantities, such as the non-linear susceptibility, higher excitations and
the energy-density autocorrelation function. We show that in the Griffiths
phase all the above quantities exhibit power-law singularities and the
corresponding critical exponents, which vary with the distance from the
critical point, can be related to the dynamical exponent z, the latter being
the positive root of [(J/h)^{1/z}]_av=1. Particularly, whereas the average spin
autocorrelation function in imaginary time decays as [G]_av(t)~t^{-1/z}, the
average energy-density autocorrelations decay with another exponent as
[G^e]_av(t)~t^{-2-1/z}.Comment: 8 pages RevTeX, 8 eps-figures include
2D Potts Model Correlation Lengths: Numerical Evidence for at
We have studied spin-spin correlation functions in the ordered phase of the
two-dimensional -state Potts model with , 15, and 20 at the
first-order transition point . Through extensive Monte Carlo
simulations we obtain strong numerical evidence that the correlation length in
the ordered phase agrees with the exactly known and recently numerically
confirmed correlation length in the disordered phase: . As a byproduct we find the energy moments in the ordered phase
at in very good agreement with a recent large -expansion.Comment: 11 pages, PostScript. To appear in Europhys. Lett. (September 1995).
See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm
KINEMATIC ANALYSIS OF ELITE JAVELIN THROWERS
Research on various aspects of the throwing motion has indicated it to be a very complex movement (Atwater, 1979). Certain kinematic parameters appear t o be common determinants of successful performance regardless of the nature of the throwing task. Under ideal conditions (i.e., ignoring air resistance and the type of implement being thrown) the path, and hence distance thrown, is determined by the angle, height and velocity of release. Such an ideal analysis needs some modification for situations in which aerodynamics are considered. Since the release phase of the javelin throw encompasses these common throwing components as well as obvious aerodynamic influences, quantification of release characteristics which establish the initial conditions of f light is important
Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration
Over the last ~ 3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx
Quantum vs. Geometric Disorder in a Two-Dimensional Heisenberg Antiferromagnet
We present a numerical study of the spin-1/2 bilayer Heisenberg
antiferromagnet with random interlayer dimer dilution. From the temperature
dependence of the uniform susceptibility and a scaling analysis of the spin
correlation length we deduce the ground state phase diagram as a function of
nonmagnetic impurity concentration p and bilayer coupling g. At the site
percolation threshold, there exists a multicritical point at small but nonzero
bilayer coupling g_m = 0.15(3). The magnetic properties of the single-layer
material La_2Cu_{1-p}(Zn,Mg)_pO_4 near the percolation threshold appear to be
controlled by the proximity to this new quantum critical point.Comment: minor changes, updated figure
- …