52 research outputs found

    Radiation-induced root surface caries restored with glass-ionomer cement placed in conventional and ART cavity preparations: Results at two years

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association (8th Jan 2008). An external link to the publisher’s copy is included.Background: There are no published studies comparing the clinical performances of more-viscous glass-ionomer cement (GIC) restorations when placed using conventional and atraumatic restorative treatment (ART) cavity preparation methods to restore root surface caries. Methods: One dentist used encapsulated Fuji IX GP and Ketac-Molar to restore 72 conventional and 74 ART cavity preparations for 15 patients who had received cervicofacial radiation therapy. Two assessors evaluated the restorations at six, 12, and 24 months for retention, marginal defects and surface wear, and recurrent caries. Results: After two years, the cumulative restoration successes were 65.2 per cent for the conventional and 66.2 per cent for the ART cavity preparations, without statistical or clinical significance (P>0.50). Restoration dislodgement accounted for 82.8 per cent and marginal defects for 17.2 per cent of all failures. There were no instances of unsatisfactory restoration wear or recurrent caries observed. Teeth with three or more restored cervical surfaces accounted for 79.3 per cent of all failures (P<0.0001). Conclusions: For root surface caries restored with GIC, the use of hand instruments only with the ART method was an equally effective alternative to conventional rotary instrumentation for cavity preparation. Larger restorations had higher failures, usually from dislodgement.JY Hu, XC Chen, YQ Li, RJ Smales and KH Yi

    Stochastic climate theory and modeling

    Get PDF
    Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models

    Constitutively elevated levels of SOCS1 suppress innate responses in DF-1 immortalised chicken fibroblast cells.

    Get PDF
    The spontaneously immortalised DF-1 cell line is rapidly replacing its progenitor primary chicken embryo fibroblasts (CEFs) for studies on avian viruses such as avian influenza but no comprehensive study has as yet been reported comparing their innate immunity phenotypes. We conducted microarray analyses of DF-1 and CEFs, under both normal and stimulated conditions using chicken interferon-α (chIFN-α) and the attenuated infectious bursal disease virus vaccine strain PBG98. We found that DF-1 have an attenuated innate response compared to CEFs. Basal expression levels of Suppressor of Cytokine Signalling 1 (chSOCS1), a negative regulator of cytokine signalling in mammals, are 16-fold higher in DF-1 than in CEFs. The chSOCS1 “SOCS box” domain (which in mammals, interacts with an E3 ubiquitin ligase complex) is not essential for the inhibition of cytokine-induced JAK/STAT signalling activation in DF-1. Overexpression of SOCS1 in chIFN-α-stimulated DF-1 led to a relative decrease in expression of interferon-stimulated genes (ISGs; MX1 and IFIT5) and increased viral yield in response to PBG98 infection. Conversely, knockdown of SOCS1 enhanced induction of ISGs and reduced viral yield in chIFN-α-stimulated DF-1. Consequently, SOCS1 reduces induction of the IFN signalling pathway in chicken cells and can potentiate virus replication

    Merging cloned alloy models with colorful refactorings

    Get PDF
    Likewise to code, clone-and-own is a common way to create variants of a model, to explore the impact of different features while exploring the design of a software system. Previously, we have introduced Colorful Alloy, an extension of the popular Alloy language and toolkit to support feature-oriented design, where model elements can be annotated with feature expressions and further highlighted with different colors to ease understanding. In this paper we propose a catalog of refactorings for Colorful Alloy models, and show how they can be used to iteratively merge cloned Alloy models into a single feature-annotated colorful model, where the commonalities and differences between the different clones are easily perceived, and more efficient aggregated analyses can be performed.This work is financed by the ERDF — European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia within project PTDC/CCI-INF/29583/2017 – POCI-01-0145-FEDER-029583

    Effects of adaptation to sea water, 170% sea water and to fresh water on activities and subcellular distribution of branchial Na + −K + -ATPase, low- and high affinity Ca ++ -ATPase, and ouabain-insensitive ATPase in Gillichthys mirabilis

    Full text link
    1. Branchial activities of Na + −K + -ATPase, ouabain-insensitive ATPase, (Mg ++ -ATPase) and Ca ++ -ATPase were measured in Gillichthys mirabilis after adaptation to salinities ranging from 170% SW to FW. Stabilities of these activities against freezing and deoxycholate solubilization and the temperature-dependence of activity rates were also investigated. Subcellular distribution and some kinetic properties of these activities, and of SDH were compared in branchial tissues of fish adapted to 170% SW and to FW.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47126/1/360_2004_Article_BF00782593.pd
    corecore