57 research outputs found

    Anisohydric sugar beet rapidly responds to light to optimize leaf water use efficiency utilizing numerous small stomata

    Get PDF
    © 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company. Under conditions of high transpiration and low soil water availability, the demand for water can exceed supply causing a reduction in water potential and a loss of cell turgor (wilting). Regulation of stomatal aperture mediates the loss of water vapour (gs), which in turn is dependent in part on the anatomical characteristics of stomatal density (SD) and stomatal size (SS). Anisohydric sugar beet (Beta vulgaris) is atypical, exhibiting wilting under high soil water availability. Spinach (Spinacia oleracea) belongs to the same family Chenopodiaceae s.s., but demonstrates a more typical wilting response. To investigate the role of stomatal dynamics in such behaviours, sugar beet and spinach leaves were exposed to step-changes in photosynthetic photon flux density (PPFD) from 250 to 2500 μmol m-2 s-1. Using a four log-logistic function, the maximum rate of stomatal opening was estimated. Concurrent measurements of SD and SS were taken for both species. While sugar beet coupled faster opening with smaller, more numerous stomata, spinach showed the converse. After exposure to drought, maximum gs was reduced in sugar beet but still achieved a similar speed of opening. It is concluded that sugar beet stomata respond rapidly to changes in PPFD with a high rate and magnitude of opening under both non-droughted and droughted conditions. Such a response may contribute to wilting, even under high soil water availability, but enables photosynthesis to be better coupled with increasing PPFD

    Growth Spectrum Complexity Dictates Aromatic Intensity in Coriander (Coriandrum sativum L.)

    Get PDF
    © Copyright © 2020 McAusland, Lim, Morris, Smith-Herman, Mohammed, Hayes-Gill, Crowe, Fisk and Murchie. Advancements in availability and specificity of light-emitting diodes (LEDs) have facilitated trait modification of high-value edible herbs and vegetables through the fine manipulation of spectra. Coriander (Coriandrum sativum L.) is a culinary herb, known for its fresh, citrusy aroma, and high economic value. Studies into the impact of light intensity and spectrum on C. sativum physiology, morphology, and aroma are limited. Using a nasal impact frequency panel, a selection of key compounds associated with the characteristic aroma of coriander was identified. Significant differences (P < 0.05) were observed in the concentration of these aromatics between plants grown in a controlled environment chamber under the same photosynthetic photon flux density (PPFD) but custom spectra: red (100%), blue (100%), red + blue (RB, 50% equal contribution), or red + green + blue (RGB, 35.8% red: 26.4% green: 37.8% blue) wavelengths. In general, the concentration of aromatics increased with increasing numbers of wavelengths emitted alongside selective changes, e.g., the greatest increase in coriander-defining E-(2)-decenal occurred under the RGB spectrum. This change in aroma profile was accompanied by significant differences (P < 0.05) in light saturated photosynthetic CO2 assimilation, water-use efficiency (Wi), and morphology. While plants grown under red wavelengths achieved the greatest leaf area, RB spectrum plants were shortest and had the highest leaf:shoot ratio. Therefore, this work evidences a trade-off between sellable commercial morphologies with a weaker, less desirable aroma or a less desirable morphology with more intense coriander-like aromas. When supplemental trichromatic LEDs were used in a commercial glasshouse, the majority of compounds, with the exception of linalool, also increased showing that even as a supplement additional wavelength can modify the aromatic profile increasing its complexity. Lower levels of linalool suggest these plants may be more susceptible to biotic stress such as herbivory. Finally, the concentration of coriander-defining aromatics E-(2)-decenal and E-(2)-hexenal was significantly higher in supermarket pre-packaged coriander leaves implying that concentrations of aromatics increase after excision. In summary, spectra can be used to co-manipulate aroma profile and plant form with increasing spectral complexity leading to greater aromatic complexity and intensity. We suggest that increasing spectral complexity progressively stimulates signaling pathways giving rise to valuable economic traits

    Anxiety in youth at clinical high risk for psychosis

    Get PDF
    Aim: High rates of anxiety have been observed in youth at clinical high risk (CHR) of developing psychosis. In CHR, anxiety often co-occurs with depression, and there is inconsistent evidence on anxiety in relation to transition to psychosis. The aim of this study was to examine: (i) the prevalence of anxiety disorders in individuals at CHR; (ii) clinical differences between those with and without anxiety; and (iii) the association of baseline anxiety with later transition to psychosis. Methods: The sample consisted of 765 CHR individuals and 280 healthy controls. CHR status was determined with the Structured Interview of Prodromal Syndromes, mood and anxiety diagnoses with the Structured Clinical Interview for DSM-IV Disorders, and severity of anxiety with the Social Interaction Anxiety Scale and Self-Rating Anxiety Scale. Results: In the CHR sample, 51% met criteria for an anxiety disorder. CHR participants had significantly more anxiety diagnoses and severity than healthy controls. Anxiety was correlated to attenuated psychotic and negative symptoms in CHR and those with an anxiety disorder demonstrated more suspiciousness. CHR participants with obsessive–compulsive disorder (OCD) exhibited more severe symptomatology than those without OCD. An initial presentation of anxiety did not differ between those who did or did not transition to psychosis. Conclusions: In this large sample of individuals at CHR, anxiety is common and associated with more severe attenuated psychotic symptoms. Treatment not only to prevent or delay transition to psychosis but also to address presenting concerns, such as anxiety, is warranted

    A novel system for spatial and temporal imaging of intrinsic plant water use efficiency

    Get PDF
    Instrumentation and methods for rapid screening and selection of plants with improved water use efficiency are essential to address current issues of global food and fuel security. A new imaging system that combines chlorophyll fluorescence and thermal imaging has been developed to generate images of assimilation rate (A), stomatal conductance (gs), and intrinsic water use efficiency (WUEi) from whole plants or leaves under controlled environmental conditions. This is the first demonstration of the production of images of WUEi and the first to determine images of gs from themography at the whole-plant scale. Data are presented illustrating the use of this system for rapidly and non-destructively screening plants for alterations in WUEi by comparing Arabidopsis thaliana mutants (OST1-1) that have altered WUEi driven by open stomata, with wild-type plants. This novel instrument not only provides the potential to monitor multiple plants simultaneously, but enables intra- and interspecies variation to be taken into account both spatially and temporally. The ability to measure A, gs, and WUEi progressively was developed to facilitate and encourage the development of new dynamic protocols. Images illustrating the instrument's dynamic capabilities are demonstrated by analysing plant responses to changing photosynthetic photon flux density (PPFD). Applications of this system will augment the research community's need for novel screening methods to identify rapidly novel lines, cultivars, or species with improved A and WUEi in order to meet the current demands on modern agriculture and food production. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology

    Economics of invasive species policy and management

    Get PDF
    corecore