221 research outputs found
From Amateurs to Connoisseurs: Modeling the Evolution of User Expertise through Online Reviews
Recommending products to consumers means not only understanding their tastes,
but also understanding their level of experience. For example, it would be a
mistake to recommend the iconic film Seven Samurai simply because a user enjoys
other action movies; rather, we might conclude that they will eventually enjoy
it -- once they are ready. The same is true for beers, wines, gourmet foods --
or any products where users have acquired tastes: the `best' products may not
be the most `accessible'. Thus our goal in this paper is to recommend products
that a user will enjoy now, while acknowledging that their tastes may have
changed over time, and may change again in the future. We model how tastes
change due to the very act of consuming more products -- in other words, as
users become more experienced. We develop a latent factor recommendation system
that explicitly accounts for each user's level of experience. We find that such
a model not only leads to better recommendations, but also allows us to study
the role of user experience and expertise on a novel dataset of fifteen million
beer, wine, food, and movie reviews.Comment: 11 pages, 7 figure
VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback
Modern recommender systems model people and items by discovering or `teasing
apart' the underlying dimensions that encode the properties of items and users'
preferences toward them. Critically, such dimensions are uncovered based on
user feedback, often in implicit form (such as purchase histories, browsing
logs, etc.); in addition, some recommender systems make use of side
information, such as product attributes, temporal information, or review text.
However one important feature that is typically ignored by existing
personalized recommendation and ranking methods is the visual appearance of the
items being considered. In this paper we propose a scalable factorization model
to incorporate visual signals into predictors of people's opinions, which we
apply to a selection of large, real-world datasets. We make use of visual
features extracted from product images using (pre-trained) deep networks, on
top of which we learn an additional layer that uncovers the visual dimensions
that best explain the variation in people's feedback. This not only leads to
significantly more accurate personalized ranking methods, but also helps to
alleviate cold start issues, and qualitatively to analyze the visual dimensions
that influence people's opinions.Comment: AAAI'1
Community Detection in Networks with Node Attributes
Community detection algorithms are fundamental tools that allow us to uncover
organizational principles in networks. When detecting communities, there are
two possible sources of information one can use: the network structure, and the
features and attributes of nodes. Even though communities form around nodes
that have common edges and common attributes, typically, algorithms have only
focused on one of these two data modalities: community detection algorithms
traditionally focus only on the network structure, while clustering algorithms
mostly consider only node attributes. In this paper, we develop Communities
from Edge Structure and Node Attributes (CESNA), an accurate and scalable
algorithm for detecting overlapping communities in networks with node
attributes. CESNA statistically models the interaction between the network
structure and the node attributes, which leads to more accurate community
detection as well as improved robustness in the presence of noise in the
network structure. CESNA has a linear runtime in the network size and is able
to process networks an order of magnitude larger than comparable approaches.
Last, CESNA also helps with the interpretation of detected communities by
finding relevant node attributes for each community.Comment: Published in the proceedings of IEEE ICDM '1
Image Labeling on a Network: Using Social-Network Metadata for Image Classification
Large-scale image retrieval benchmarks invariably consist of images from the
Web. Many of these benchmarks are derived from online photo sharing networks,
like Flickr, which in addition to hosting images also provide a highly
interactive social community. Such communities generate rich metadata that can
naturally be harnessed for image classification and retrieval. Here we study
four popular benchmark datasets, extending them with social-network metadata,
such as the groups to which each image belongs, the comment thread associated
with the image, who uploaded it, their location, and their network of friends.
Since these types of data are inherently relational, we propose a model that
explicitly accounts for the interdependencies between images sharing common
properties. We model the task as a binary labeling problem on a network, and
use structured learning techniques to learn model parameters. We find that
social-network metadata are useful in a variety of classification tasks, in
many cases outperforming methods based on image content.Comment: ECCV 2012; 14 pages, 4 figure
Detecting Cohesive and 2-mode Communities in Directed and Undirected Networks
Networks are a general language for representing relational information among
objects. An effective way to model, reason about, and summarize networks, is to
discover sets of nodes with common connectivity patterns. Such sets are
commonly referred to as network communities. Research on network community
detection has predominantly focused on identifying communities of densely
connected nodes in undirected networks.
In this paper we develop a novel overlapping community detection method that
scales to networks of millions of nodes and edges and advances research along
two dimensions: the connectivity structure of communities, and the use of edge
directedness for community detection. First, we extend traditional definitions
of network communities by building on the observation that nodes can be densely
interlinked in two different ways: In cohesive communities nodes link to each
other, while in 2-mode communities nodes link in a bipartite fashion, where
links predominate between the two partitions rather than inside them. Our
method successfully detects both 2-mode as well as cohesive communities, that
may also overlap or be hierarchically nested. Second, while most existing
community detection methods treat directed edges as though they were
undirected, our method accounts for edge directions and is able to identify
novel and meaningful community structures in both directed and undirected
networks, using data from social, biological, and ecological domains.Comment: Published in the proceedings of WSDM '1
- …